

Copyright ©2007 Mike Murach & Associates, Inc.
All rights reserved.
murachbooks@murach.com • www.murach.com

Student Workbook
for

Murach’s Java SE 6

Introduction for students ... ii
Chapter 1 ..1
Chapter 2 ..6
Chapter 3 ..14
Chapter 4 ..22
Chapter 5 ..29
Chapter 6 ..38
Chapter 7 ..47
Chapter 8 ..56
Chapter 9 ..65
Chapter 10 ..73
Chapter 11 ..83
Chapter 12 ..91
Chapter 13 ..99
Chapter 14 ..107
Chapter 15 ..115
Chapter 16 ..121
Chapter 17 ..129
Chapter 18 ..137
Chapter 19 ..143
Chapter 20 ..155
Chapter 21 ..163
Chapter 22 ..172

mailto:murachbooks@murach.com
http://www.murach.com

ii Student Workbook for Murach’s Java SE 6

Introduction for students
This workbook is designed as a companion to Murach’s Java SE 6. It provides the

study aids that you need for mastering Java. The topics that follow describe the
components of this workbook and explain how to get the most from them.

Behavioral objectives

The behavioral objectives for each chapter describe the skills that you should have
when you complete the chapter. The educational theory is that if you know what the
objectives are, your study will be more focused. In particular, you’ll know exactly what
to study for the tests because the test questions that we supply only test the skills that are
described by the objectives.

If you study the objectives, you can see that the first objectives for each chapter are
what we refer to as applied objectives. These ask you to apply what you’ve learned as
you develop Java programs. If you can develop the applications that are described by the
projects in this workbook, you will meet these objectives.

After the applied objectives for each chapter, you’ll find what we refer to as
knowledge objectives. These objectives define skills like identifying, describing, and
explaining the required concepts, terms, and procedures. In general, you should be able to
do the knowledge objectives, even if you have trouble with the applied objectives.

In some cases, it makes sense to review the objectives before you read a chapter. That
way, you’ll know what to focus on. Often, though, the objectives won’t make sense until
after you read the chapter. That’s why we think it’s better to review the objectives after
you read a chapter. Then, if you don’t think you can do one or more of the objectives,
you can review the related portions of the chapter.

Chapter summaries

This workbook also includes summaries of the information presented in each chapter.
These summaries are bulleted lists of the main concepts and programming techniques, in
the same sequence that they are presented in the text. Then, if you aren’t clear about one
or more of these summary points, you can review the topics that present them. Although
these are the same summaries that are presented in the text, we hope you’ll agree that it
helps to have them in this workbook, right after the objectives.

Terms

The terms list for each chapter contains all of the new terms that are presented in the
chapter. After reading a chapter, you can scan the list to make sure you have a general
understanding of what each term means. Then, if necessary, you can review the terms
you don’t understand.

When you use these lists, please keep in mind that you don’t need to be able to write
definitions of the terms. You should, however, be able to understand them when you hear
them in conversations. And you should be able to use the major terms in conversations
that you initiate.

 Student Workbook for Murach’s Java SE 6 iii

Exercises

For each chapter, this workbook presents one or more exercises. Some of these
exercises guide you through the development of applications, and some force you to
apply what you’ve learned in new ways. Although these are the same exercises that are in
the book, this workbook lets you print them out on separate sheets so they’re easier to
work with. If you can do all of the exercises, you should be able to meet the knowledge
objectives for each chapter.

To help you get the most practice in the least time, you start most of the exercises
from code that we provide. We also provide all of the test data that you need for the
exercises. Before you start the exercises, then, you need to download these files from our
web site and install them on your system. To do that, you can follow the procedures in
appendix A of the textbook or go to the Downloads portion of our web site, click on the
book title, and download the self-extracting zip file named “All Book Files.”

Projects

The projects for each chapter are designed to test your ability to develop Java
applications from scratch, and your instructor will most likely assign one or more projects
for each section of the book. These projects, of course, are the ultimate test of your Java
mastery. If you can do them all, you have developed an impressive set of Java skills.

Although the project specifications give you all of the information that you need for
doing each project, you may have to figure out some of the details on your own. That’s
realistic, though, because most of the specifications in the real world don’t provide all of
the implementation details. In some cases, then, you may need to ask your instructor
questions that clarify details about what the requirements are or how an application
should be implemented. In other cases, your instructor may provide details that clarify or
enhance an application before you ask.

Here again, we provide all of the source files and data that you need for doing the
projects. If you downloaded this workbook from our web site, the required files have
already been installed on your system as part of that procedure. Otherwise, you can get
them from your instructor.

Conclusion

Since we know how much there is to learn and how little time the modern student
has, we have tried to include only those activities that help you master the essential skills
in the most efficient way possible. So, after you read each chapter in the book, you can
review the objectives, chapter summaries, and terms lists to make sure you understand the
critical concepts and terms.

Once you’ve done that, the exercises and projects will provide the practice you need
for mastering Java programming. They will also help you experience the excitement of
programming. Although you couldn’t possibly do all of the exercises and projects in a
single semester, the more you do, the better you’re going to get.

 Student Workbook for Murach’s Java SE 6 1

Chapter 1
How to get started with Java
Objectives

Applied
• Install Java SE 6 and the API documentation. If necessary, configure your system to

work with the JDK.

• Given the name of a package and a class, look it up in the documentation for the API.

• Given the source code for a Java application, use TextPad to enter, edit, compile, and
run the program.

• Given the source file for a Java application, compile and run the program from the
command prompt.

Knowledge
• Describe how Java compares with C++ and C# based on these features: syntax,

platform independence, speed, and memory management.

• Name and describe the three types of programs that you can create with Java.

• Describe how Java compiles and interprets code.

• Explain how the use of bytecodes lets Java achieve platform independence.

• Explain the purpose of setting the Windows command path to work with the JDK.

• Explain what the class path is used for and when you should set it.

• Explain the difference between a compile-time error and a runtime error.

• Describe the benefits of using a Java IDE like Eclipse, NetBeans, or BlueJ.

Summary
• You use the Java Development Kit (JDK) to develop Java programs. This used to be

called the Software Development Kit (SDK) for Java. As of version 6, the Standard
Edition (SE) of Java is called Java SE. In older versions, it was called the Java
Platform 2, Standard Edition (J2SE).

• You can use Java SE to create applications and a special type of Internet-based
application known as an applet. In addition, you can use the Enterprise Edition (EE),
which is known as Java EE, to create server-side applications using servlets and
JavaServer Pages (JSPs).

• The Java compiler translates source code into a platform-independent format known
as Java bytecodes. Then, the Java interpreter, or Java Runtime Environment (JRE),
translates the bytecodes into instructions that can be run by a specific operating
system. A Java interpreter is an implementation of a Java virtual machine (JVM).

2 Student Workbook for Murach’s Java SE 6

• When you use the JDK with Windows, you should add the bin directory (usually
C:\Program Files\Java\jdk1.6.0\bin) to the command path and you should add the
current directory to the classpath.

• A text editor that’s designed for working with Java provides features that make it
easier to enter, edit, and save Java code.

• Some text editors such as TextPad include commands for compiling and running Java
applications. You can also use the command prompt to enter the commands for
compiling and running an application.

• When you compile a program, you may get compile-time errors. When you run a
program, you may get runtime errors.

• To compile code from the command prompt, you use the javac command to start the
Java compiler. To run an application from the command prompt, you use the java
command to start the Java interpreter.

• You can get detailed information about any class in the J2SE by using a web browser
to browse the HTML-based documentation for its Application Programming
Interface (API).

• An Integrated Development Environment (IDE) like Eclipse, NetBeans, or BlueJ can
make working with Java easier.

Terms
Java Development Kit (JDK)
Software Development Kit (SDK)
Java Standard Edition (SE)
application
graphical user interface (GUI)
applet
servlet
JavaServer Pages (JSPs)
class
source code
Java compiler
bytecodes
Java interpreter
interpret
platform independence
Java virtual machine (JVM)
Java Plug-in
Java Runtime Environment (JRE)
command path
autoexec.bat file
class path

text editor
case-sensitive language
ASCII format
ANSI format
console
compile-time error
runtime error
public class
command prompt
DOS prompt
DOS window
javac command
java command
switch
deprecated features
Application Programming Interface

(API)
package
Integrated Development

Environment (IDE)

 Student Workbook for Murach’s Java SE 6 3

Exercise 1-1 Use TextPad to develop an application
This exercise will guide you through the process of using TextPad to enter, save,
compile, and run a simple application.

Enter and save the source code
1. Start TextPad by clicking on the Start button and selecting Programs or All

Programs TextPad.

2. Enter this code (type carefully and use the same capitalization):
public class TestApp
{
 public static void main(String[] args)
 {
 System.out.println(
 "This Java application has run successfully");
 }

}

3. Use the Save command in the File menu to display the Save As dialog box. Next,
navigate to the c:\java1.6\ch01 directory and enter TestApp in the File name box. If
necessary, select the Java option from the Save as Type combo box. Then, click on
the Save button to save the file.

Compile the source code and run the application
4. Press Ctrl+1 to compile the source code. If you get an error message, read the error

message, edit the text file, save your changes, and compile the application again.
Repeat this process until you get a clean compile.

5. Press Ctrl+2 to run the application. This application should display a console window
that says “This Java application has run successfully” followed by a line that reads
“Press any key to continue…”.

6. Press any key. This should close the console window. If it doesn’t, click on the Close
button in the upper right corner of the window to close it.

Introduce and correct a compile-time error
7. In the TextPad window, delete the semicolon at the end of the System.out.println

statement. Then, press Ctrl+1 to compile the source code. TextPad should display an
error message that indicates that the semicolon is missing in the Command Results
window.

8. In the Document Selector pane, click on the TestApp.java file to switch back to the
source code, and press Ctrl+F6 twice to toggle back and forth between the Command
Result window and the source code. Then, select View Line Numbers to display the
line numbers for the source code lines.

9. Correct the error and compile the file again (this automatically saves your changes).
This time the file should compile cleanly, so you can run it again and make sure that
it works correctly.

10. Select Configure Preferences, click on View, and check Line Numbers. That will
add line numbers to the source statements in all your applications. If you want to look
through the other options and set any of them, do that now. When you’re done, close
the file and exit TextPad.

4 Student Workbook for Murach’s Java SE 6

Exercise 1-2 Use any Java development tool to
develop an application

If you aren’t going to use TextPad to develop your Java programs, you can try whatever
tools you are going to use with this generic exercise.

Use any text editor to enter and save the source code
1. Start the text editor and enter this code (type carefully and use the same

capitalization):
public class TestApp
{
 public static void main(String[] args)
 {
 System.out.println(
 "This Java application has run successfully");
 }

}

2. Save this code in the c:\java1.6\ch01 directory in a file named “TestApp.java”.

Compile the source code and run the application
3. Compile the source code. If you’re using a text editor that has a compile command,

use this command. Otherwise, use your command prompt to compile the source code.
To do that, start your command prompt and use the cd command to change to the
c:\java1.6\ch01 directory. Then, enter the javac command like this (make sure to use
the same capitalization):
javac TestApp.java

4. Run the application. If you’re using a text editor that has a run or execute command,
use this command. Otherwise, use your command prompt to run the application. To
do that, enter the java command like this (make sure to use the same capitalization):
java TestApp

5. When you enter this command, the application should print “This Java application
has run successfully” to the console window.

Exercise 1-3 Use the command prompt to run any
compiled application

This exercise shows how to use the command prompt to run any Java application.

1. Open the command prompt window. Then, change the current directory to
c:\java1.6\ch01.

2. Use the java command to run the LoanCalculatorApp application. This application
calculates the monthly payment for a loan amount at the interest rate and number of
years that you specify. This shows how the JRE can run any application whether or
not it has been compiled on that machine. When you’re done, close the application to
return to the command prompt.

 Student Workbook for Murach’s Java SE 6 5

Exercise 1-4 Navigate the API documentation
This exercise will give you some practice using the API documentation to look up
information about a class.

1. Start a web browser and navigate to the index page that contains the API
documentation for the JDK (usually C:\Program Files\Java\jdk1.6.0\docs\
api\index.htm). This page should look like the one shown in figure 1-16.

2. Bookmark this page so you can easily access it later. To do that with the Internet
Explorer, select the Add To Favorites item from the Favorites menu. Then, close
your web browser.

3. Start your web browser again and use the bookmark to return to the API
documentation for the JDK. To do that with the Internet Explorer, select the Java 2
Platform SE item from the Favorites menu.

4. Select the java.lang package in the upper left frame and notice that the links in the
lower left frame change. Select the System class from this frame to display
information about it in the right frame.

5. Scroll down to the Field Summary area in the right frame and click on the out link for
the standard output stream. When you do, an HTML page that gives some
information about how to use the standard output stream will be displayed. In the
next chapter, you’ll learn more about using the out field of the System class to print
data to the console.

6. Continue experimenting with the documentation until you’re comfortable with how it
works. Then, close the browser.

6 Student Workbook for Murach’s Java SE 6

Chapter 2
Introduction to Java programming
Objectives

Applied
• Given the specifications for an application that requires only the language elements

presented in this chapter, write, test, and debug the application.

• Given the Java code for an application that uses any of the language elements
presented in this chapter, explain what each statement in the application does.

Knowledge
• Explain how the two types of comments are typically used in a Java application.

• Given a list of names, identify the ones that are valid for Java classes and variables.

• Given a list of names, identify the ones that follow the naming recommendations for
classes presented in this chapter.

• Given a list of names, identify the ones that follow the naming recommendations for
variables presented in this chapter.

• Describe the difference between a main method and other methods.

• Name three things you can assign to a numeric variable.

• Distinguish between the int and double data types.

• Explain what happens when an arithmetic expression uses both int and double values.

• Name three things you can assign to a String variable.

• Explain what an escape sequence is and when you would use one.

• Explain what importing a class means and when you typically do that.

• Explain what a static method is and how it differs from other methods.

• Explain what a Scanner object can be used for.

• Explain what the System.out object can be used for.

• Explain what a Boolean expression is and when you might use one.

• Explain what it means for a variable to have block scope.

• Describe the difference between testing an application and debugging an application.

• Describe the difference between a runtime error and a logical error.

 Student Workbook for Murach’s Java SE 6 7

Summary
• The statements in a Java program direct the operation of the program. The comments

document what the program does.

• You must code at least one public class for every Java program that you write. The
main method of this class is executed when you run the class.

• Variables are used to store data that changes as a program runs, and you use
assignment statements to assign values to variables. Two of the most common data
types for numeric variables are the int and double types.

• A string is an object that’s created from the String class, and it can contain any
characters in the character set. You can use the plus sign to join a string with another
string or a data type, and you can use assignment statements to append one string to
another. To include special characters in strings, you can use escape sequences.

• Before you use many of the classes in the Java API, you should code an import
statement for the class or for the package that contains it.

• When you use a constructor to create an object from a Java class, you are creating an
instance of the class. There may be more than one constructor for a class, and a
constructor may require one or more arguments.

• You call a method from an object and you call a static method from a class. A
method may require one or more arguments.

• One of the most time-consuming aspects of Java programming is researching the
classes and methods that your programs require.

• You can use the methods of a Scanner object to read data from the console, and you
can use the print and println methods of the System.out object to print data to the
console.

• You can code if statements to control the logic of a program based on the true or false
values of Boolean expressions. You can code while statements to repeat a series of
statements until a Boolean expression becomes false.

• Testing is the process of finding the errors or bugs in an application. Debugging is the
process of fixing the bugs.

8 Student Workbook for Murach’s Java SE 6

Terms
statement
block of code
comment
single-line comment
end-of-line comment
block comment
identifier
keyword
class
class declaration
access modifier
scope
method
main method
main method declaration
method argument
variable
primitive data type
integer
initialize a variable
declare a data type
camel notation
literal
assignment statement
arithmetic expression
arithmetic operator
operand
casting
string
string literal
empty string
null value
join
concatenate
append
escape sequence

package
Abstract Window Toolkit (AWT)
Swing
object
constructor
argument
instance
instantiation
calling a method
static method
console
token
whitespace
exception
control statement
Boolean expression
Boolean value
relational operator
if/else statement
if statement
selection structure
block scope
nested if statements
while statement
iteration structure
while loop
counter variable
counter
infinite loop
test
bug
runtime error
runtime exception
logical error
debug

 Student Workbook for Murach’s Java SE 6 9

Exercise 2-1 Test the Invoice application
In this exercise, you’ll compile and test the Invoice application that’s presented in figure
2-18. That will give you a better idea of how this program works.

1. Start your text editor and open the file named InvoiceApp.java that you should find
in the c:\java1.6\ch02 directory. Then, compile the application, which should compile
with no errors.

2. Test this application with valid subtotal entries like 50, 150, 250, and 1000 so it’s
easy to see whether or not the calculations are correct.

3. Test the application with a subtotal value like 233.33. This will show that the
application doesn’t round the results to two decimal places. But in the next chapter,
you’ll learn how to do that.

4. Test the application with an invalid subtotal value like $1000. This time, the
application should crash. Study the error message that’s displayed and determine
which line of source code was running when the error occurred.

5. Restart the application, enter a valid subtotal, and enter 20 when the program asks
you whether you want to continue. What happens and why?

6. Restart the application and enter two values separated by whitespace (like 1000 20)
before pressing the Enter key. What happens and why?

Exercise 2-2 Modify the Test Score application
In this exercise, you’ll modify the Test Score application that’s presented in figure 2-19.
That will give you a chance to write some code of your own.

1. Open the file named TestScoreApp.java in the c:\java1.6\ch02 directory, and save the
program as ModifiedTestScoreApp.java in the same directory. Then, change the class
name to ModifiedTestScoreApp and compile the class.

2. Test this application with valid data to see how it works. Then, test the application
with invalid data to see what will cause exceptions. Note that if you enter a test score
like 125, the program ends, even though the instructions say that the program ends
when you enter 999.

3. Modify the while statement so the program only ends when you enter 999. Then, test
the program to see how this works.

4. Modify the if statement so it displays an error message like “Invalid entry, not
counted” if the user enters a score that’s greater than 100 but isn’t 999. Then, test this
change.

10 Student Workbook for Murach’s Java SE 6

Exercise 2-3 Modify the Invoice application
In this exercise, you’ll modify the Invoice application. When you’re through with the
modifications, a test run should look something like this:

1. Open the file named InvoiceApp.java that’s in the c:\java1.6\ch02 directory, and save
the program as ModifiedInvoiceApp.java in the same directory. Then, change the
class name to ModifiedInvoiceApp.

2. Modify the code so the application ends only when the user enters “n” or “N”. As it
is now, the application ends when the user enters anything other than “y” or “Y”. To
do this, you need to use a not operator (!) with the equalsIgnoreCase method. This is
illustrated by the third example in figure 2-15. Then, compile this class and test this
change by entering 0 at the Continue? prompt.

3. Modify the code so it provides a discount of 25 percent when the subtotal is greater
than or equal to $500. Then, test this change.

4. Using the Test Score application as a model, modify the Invoice program so it
displays the number of invoices, the average invoice amount, and the average
discount amount when the user ends the program. Then, test this change.

 Student Workbook for Murach’s Java SE 6 11

Exercise 2-4 Use the Java API documentation
This exercise steps you through the Java API documentation for the Scanner, String, and
Double classes. That will give you a better idea of how extensive the Java API is.

1. Go to the index page of the Java API documentation as described in chapter 1. If you
did the exercises for that chapter, you should have it bookmarked.

2. Click the java.util package in the upper left window and the Scanner class in the
lower left window to display the documentation for the Scanner class. Then, scroll
through this documentation to get an idea of its scope.

3. Review the constructors for the Scanner class. The constructor that’s presented in this
chapter has just an InputStream object as its argument. When you code that
argument, remember that System.in represents the InputStream object for the
console.

4. Review the methods of the Scanner class with special attention to the next, nextInt,
and nextDouble methods. Note that there are three next methods and two nextInt
methods. The ones used in this chapter have no arguments. Then, review the has
methods in the Scanner class. You’ll learn how to use some of these in chapter 5.

5. Go to the documentation for the String class, which is in the java.lang package, and
note that it offers a number of constructors. In this chapter, though, you learned the
shortcut for creating String objects because that’s the best way to do that. Now,
review the methods for this class with special attention to the equals and
equalsIgnoreCase methods.

6. Go to the documentation for the Double class, which is also in the java.lang package.
Then, review the static parseDouble and toString methods that you’ll learn how to
use in the next chapter.

If you find the documentation difficult to follow, rest assured that you’ll become
comfortable with it before you finish this book. Once you learn how to create your own
classes, constructors, and methods, it will make more sense.

12 Student Workbook for Murach’s Java SE 6

Project 2-1: Calculate a rectangle’s area and perimeter

Console
Welcome to the Area and Perimeter Calculator

Enter length: 100
Enter width: 200
Area: 20000.0
Perimeter: 600.0

Continue? (y/n): y

Enter length: 8
Enter width: 4
Area: 32.0
Perimeter: 24.0

Continue? (y/n): n

Press any key to continue . . .

Operation
• The application prompts the user to enter values for the length and width of a

rectangle.

• The application displays the area and perimeter of the rectangle.

• The application prompts the user to continue.

Specifications
• The formulas for calculating area are perimeter are:

area = width * length
perimeter = 2 * width + 2 * length

• The application should accept decimal entries like 10.5 and 20.65.

• Assume that the user will enter valid numeric data for the length and width.

• The application should continue only if the user enters “y” or “Y” to continue.

 Student Workbook for Murach’s Java SE 6 13

Project 2-2: Convert number grades to letter grades

Console
Welcome to the Letter Grade Converter

Enter numerical grade: 90
Letter grade: A

Continue? (y/n): y

Enter numerical grade: 88
Letter grade: A

Continue? (y/n): y

Enter numerical grade: 80
Letter grade: B

Continue? (y/n): y

Enter numerical grade: 67
Letter grade: C

Continue? (y/n): y

Enter numerical grade: 59
Letter grade: F

Continue? (y/n): n

Press any key to continue . . .

Operation
• The user enters a numerical grade from 0 to 100.

• The application displays the corresponding letter grade.

• The application prompts the user to continue.

Specifications
• The grading criteria is as follows:

A 88-100
B 80-87
C 67-79
D 60-67
F <60

• Assume that the user will enter valid integers for the grades.

• The application should continue only if the user enters “y” or “Y” to continue.

14 Student Workbook for Murach’s Java SE 6

Chapter 3
How to work with data
Objectives

Applied
• Given the specifications for an application that uses any of the eight primitive data

types presented in this chapter, write the application.

• Use the NumberFormat, Math, Integer, Double, and BigDecimal classes to work with
data.

• Given the Java code for an application that uses any of the language elements
presented in this chapter, explain what each statement in the application does.

Knowledge
• Describe any one of the eight primitive types.

• Distinguish between a variable and a constant.

• Given a list of names, identify the ones that follow the naming recommendations for
constants presented in this chapter.

• Explain the difference between a binary operator and a unary operator and give an
example of each.

• Explain the difference between prefixing and postfixing an increment or decrement
operator.

• Explain what a shortcut assignment operator is and how you use one in an
assignment statement.

• List the order of precedence for arithmetic operations and explain how you can
change the order in which operations are performed.

• Explain what casting is, when it’s performed implicitly, and when you must perform
it explicitly.

• Describe how casting between int and double types can affect the decimal value in a
result.

• Describe the primary uses of these classes: NumberFormat, Math, Integer, and
Double.

• List two reasons for using the BigDecimal class.

 Student Workbook for Murach’s Java SE 6 15

Summary
• Java provides eight primitive data types to store integer, floating-point, character,

and boolean values.

• Variables store data that changes as a program runs. Constants store data that doesn’t
change as a program runs. You use assignment statements to assign values to
variables.

• You can use arithmetic operators to form arithmetic expressions, and you can use
some assignment operators as a shorthand for some types of arithmetic expressions.

• Java can implicitly cast a less precise data type to a more precise data type. Java also
lets you explicitly cast a more precise data type to a less precise data type.

• You can use the NumberFormat class to apply standard currency, percent, and
number formats to any of the primitive numeric types.

• You can use the static methods of the Math class to perform mathematical operations
such as rounding numbers and calculating square roots.

• You can use the constructors of the Double and Integer wrapper classes to create
objects that wrap double and int values. You can also use the static methods of these
classes to convert strings to numbers and vice versa.

• You can use the constructors of the BigDecimal class to create objects that store
decimal values that aren’t limited to 16 significant digits. Then, you can use the
methods of these objects to do the calculations that your programs require.

Terms
primitive data type
bit
byte
integer
floating-point number
significant digit
single precision number
double precision number
scientific notation
Unicode character set
ASCII character set
boolean
variable
constant
declare
initialize
assign an initial value
final variable
arithmetic expression
arithmetic operator

operand
literal
binary operator
unary operator
assignment statement
prefixed operator
postfixed operator
assignment operator
order of precedence
casting
implicit cast
widening conversion
narrowing conversion
explicit cast
half-even
wrapper class
throw an exception
catch an exception
debugging statement
scale

16 Student Workbook for Murach’s Java SE 6

Exercise 3-1 Test the Invoice application
In this exercise, you’ll compile and test the formatted Invoice application that’s presented
in figure 3-10.

1. Open the file named FormattedInvoiceApp.java that you should find in the
c:\java1.6\ch03 directory. Then, compile and run the application. As you test the
application, enter the three subtotal values that are shown in figures 3-10 and 3-11 to
see how the program works and to see what the problems are.

2. To better understand what is happening, add debugging statements like those in
figure 3-11 so the program displays two sets of data for each entry: first the
unformatted output, then the formatted output. When you add debugging statements,
you should try to do it in a way that makes them easy to remove when you’re through
debugging.

3. Test the application again with a range of entries so you clearly see what the data
problems are when you study the unformatted and formatted results.

Exercise 3-2 Modify the Test Score application
In this exercise, you’ll use some of the skills that you learned in this chapter as you
modify the Test Score application that you worked with in the last chapter, but you won’t
use BigDecimal arithmetic.

1. Open the file named ModfiedTestScoreApp.java that you should find in the
c:\java1.6\ch02 directory if you did exercise 2-2. If you didn’t do that exercise, open
TestScoreApp instead.

2. Save the file as EnhancedTestScoreApp.java in the ch03 directory, and change the
class name in the file to EnhancedTestScoreApp. Then, compile and run the program
to refresh your memory about how it works.

3. Use the += operator to increase the scoreCount and scoreTotal fields. Then, test this
to make sure that it works.

4. As the user enters test scores, use the methods of the Math class to keep track of the
minimum and maximum scores. When the user enters 999 to end the program,
display these scores at the end of the other output data. Now, test these changes to
make sure that they work. (This step can be challenging if you’re new to
programming, but you’ll learn a lot by doing it.)

5. Change the variable that you use to total the scores from a double to an int data type.
Then, use casting to cast the score count and score total to doubles as you calculate
the average score and save that average as a double. Now, test that change.

6. Use the NumberFormat class to round the average score to one decimal place before
displaying it at the end of the program. Then, test this change. Note that the rounding
method that’s used doesn’t matter in a program like this.

 Student Workbook for Murach’s Java SE 6 17

Exercise 3-3 Create a new application
In this exercise, you’ll develop an application that will give you a chance to use your new
skills. This application asks the user to enter a file size in megabytes (MB) and then
calculates how long it takes to download that file with a 56K analog modem (you won’t
need to use BigDecimal arithmetic). The output from this application should look
something like this:

Welcome to the Download Time Estimator

This program calculates how long it will take to
download a file with a 56K analog modem.

Enter file size (MB): 50

A "56K" modem will take 2 hours 44 minutes 6 seconds

Continue? (y/n):

1. Instead of starting this application from scratch, open the file named
FormattedInvoiceApp.java in the ch03 directory. Then, save it with the name
DownloadTimeApp.java, and change its class name to DownloadTimeApp.

2. Delete the code that you won’t need for this application, and modify the code that
remains so it provides for the basic operation of the program without the calculations.
These first two steps are an efficient way to start any new application because you
don’t have to re-enter the routine code.

3. Add the code that that calculates the hours, minutes, and seconds needed to download
this file with a 56K analog modem. To do the calculations, assume that a 56K modem
can transfer data at the rate of 5.2 kilobytes (KB) per second. Then, add the code for
displaying the results. (You also need to know that 1 MB is equal to 1,024 KB).

4. Compile and run the application. Enter a value of 50 for the file size to be sure that
the calculated value is the same as shown above. Then, enter other values to see how
they work.

Exercise 3-4 Use BigDecimal arithmetic
To get some practice with BigDecimal arithmetic, this exercise has you modify the Test
Score application so it uses BigDecimal arithmetic.

1. Open EnhancedTestScoreApp in the ch03 directory or your last version of the Test
Score application in the ch02 directory. Then, save the file as BDTestScoreApp in
ch03, and change the class name to BDTestScoreApp.

2. Modify the program so it uses BigDecimal arithmetic to calculate the average test
score with the result rounded to one decimal place. Be sure to use the appropriate
toString methods of either the Double or Integer classes so the BigDecimal objects
are constructed from string values. Then, test this change with a range of values.

18 Student Workbook for Murach’s Java SE 6

Project 3-1:
Convert temperature from Fahrenheit to Celsius

Console
Welcome to the Temperature Converter

Enter degrees in Fahrenheit: 212
Degrees in Celsius: 100

Continue? (y/n): y

Enter degrees in Fahrenheit: 32
Degrees in Celsius: 0

Continue? (y/n): y

Enter degrees in Fahrenheit: 77.5
Degrees in Celsius: 25.28

Continue? (y/n): n

Press any key to continue . . .

Operation
• The application prompts the user to enter a temperature in Fahrenheit degrees.

• The application displays the temperature in Celsius degrees.

• The application prompts the user to continue.

Specifications
• The formula for converting temperatures from Fahrenheit to Celsius is:

c = (f-32) * 5/9

• The application should accept decimal entries like 77.5.

• Assume that the user will enter valid data.

• The application should continue only if the user enters “y” or “Y” to continue.

 Student Workbook for Murach’s Java SE 6 19

Project 3-2:
Calculate travel time based on distance and speed

Console
Welcome to the Travel Time Calculator

Enter miles: 200
Enter miles per hour: 65

Estimated travel time
Hours: 3
Minutes: 4

Continue? (y/n): y

Enter miles: 100
Enter miles per hour: 65

Estimated travel time
Hours: 1
Minutes: 32

Continue? (y/n): n

Press any key to continue . . .

Operation
• The application prompts the user to enter values for miles and miles per hour.

• The application displays the approximate travel time in hours and minutes.

• The application prompts the user to continue.

Specifications
• The application should accept decimal entries like 10.5 and 20.65.

• Assume that the user will enter valid data.

• The application should continue only if the user enters “y” or “Y” to continue.

Hint
• Use integer arithmetic and the division and modulus operators to get hours and

minutes.

20 Student Workbook for Murach’s Java SE 6

Project 3-3: Calculate interest

Console
Welcome to the Interest Calculator

Enter loan amount: 520000
Enter interest rate: .05375

Loan amount: $520,000.00
Interest rate: 5.375%
Interest: $27,950.00

Continue? (y/n): y

Enter loan amount: 4944.5
Enter interest rate: .01

Loan amount: $4,944.50
Interest rate: 1%
Interest: $49.45

Continue? (y/n): n

Press any key to continue . . .

Operation
• The application prompts the user to enter a loan amount and an interest rate.

• The application calculates the interest amount and formats the loan amount, interest
rate, and interest amount. Then, it displays the formatted results to the user.

• The application prompts the user to continue.

Specifications
• This application should use the BigDecimal class to make sure that all calculations

are accurate. It should round the interest that’s calculated to two decimal places,
rounding up if the third decimal place is five or greater.

• The value for the formatted interest rate should allow for up to 3 decimal places.

• Assume that the user will enter valid double values for the loan amount and interest
rate.

• The application should continue only if the user enters “y” or “Y” to continue.

 Student Workbook for Murach’s Java SE 6 21

Project 3-4: Calculate coins for change

Console
Welcome to the Change Calculator

Enter number of cents (0-99): 99

Quarters: 3
Dimes: 2
Nickels: 0
Pennies: 4

Continue? (y/n): y

Enter number of cents (0-99): 55

Quarters: 2
Dimes: 0
Nickels: 1
Pennies: 0

Continue? (y/n): n

Press any key to continue . . .

Operation
• The application prompts the user to enter a number of cents from 0 to 99.

• The application displays the minimum number of quarters, dimes, nickels, and
pennies that represent the coins that make up the specified number of cents.

• The application prompts the user to continue.

Specifications
• Assume that the user will enter a valid integer value for the number of cents.

• The application should continue only if the user enters “y” or “Y” to continue.

22 Student Workbook for Murach’s Java SE 6

Chapter 4
How to code control statements
Objectives

Applied
• Code if/else statements and switch statements to control the logic of an application.

• Code while, do-while, and for loops to control the repetitive processing that an
application requires.

• Code nested for loops whenever they are required.

• Use the break, labeled break, continue, and labeled continue statements to jump out
of a loop or to jump to the start of a loop.

• Code a static method that performs a given operation, and code a statement that calls
that method.

• Given the Java code for an application that uses any of the language elements
presented in this chapter, explain what each statement in the application does.

Knowledge
• Explain how a reference type like a String object is different from a primitive data

type.

• Explain what a logical operator is and why you would use one.

• Describe the difference between how the regular logical operators and the short-
circuit operators work.

• Compare the if/else and switch statements.

• Explain what it means for execution to fall through a label in a switch statement.

• Describe the differences between while, do-while, and for loops.

• Explain what an infinite loop is and what you must do when one occurs.

• Describe the difference between the break statement and the continue statement.

• Explain what an access modifier is and how it affects the static methods you define.

• Explain what the signature of a method is.

 Student Workbook for Murach’s Java SE 6 23

Summary
• You can use the relational operators to create Boolean expressions that compare

primitive data types and return true or false values, and you can use the logical
operators to connect two or more Boolean expressions.

• To determine whether two strings are equal, you can call the equals and
equalsIgnoreCase methods from a String object.

• You can use if/else statements and switch statements to control the logic of an
application, and you can nest these statements whenever necessary.

• You can use while, do-while, and for loops to repeatedly execute one or more
statements until a Boolean expression evaluates to false, and you can nest these
statements whenever necessary.

• You can use break statements to jump to the end of the current loop or a labeled loop,
and you can use continue statements to jump to the start of the current loop or a
labeled loop.

• To code a static method, you code an access modifier, the static keyword, its return
type, its name, and a parameter list. Then, to return a value, you code a return
statement within the method.

• To call a static method that’s in the same class as the main method, you code the
method name followed by an argument list.

Terms
Boolean expression
relational operator
reference type
logical operator
short-circuit operator
if/else statement
if statement
selection structure
block of statements
block scope
nested statements
switch statement
case structure
case label
break statement
fall through
default label
iteration structure

while statement
while loop
do-while loop
counter variable
infinite loop
for loop
label
static method
access modifier
parameter list
parameter
return statement
signature
overloading a method
calling a static method
argument
argument list

24 Student Workbook for Murach’s Java SE 6

Exercise 4-1 Test the Future Value application
In this exercise, you’ll test the Future Value application that’s presented in figure 4-9 in
this chapter.

1. Open the FutureValueApp class stored in the ch04 directory. Then, compile and test
it with valid data to see how it works.

2. To make sure that the results are correct, add a debugging statement within the for
loop that calculates the future value. This statement should display the month and
future value each time through the loop. Then, test the program with simple entries
like 100 for monthly investment, 12 for yearly interest (because that’s 1 percent each
month), and 1 for year. When the debugging data is displayed, check the results
manually to make sure they’re correct.

Exercise 4-2 Enhance the Invoice application
In this exercise, you’ll modify the nested if/else statements that are used to determine the
discount percent for the Invoice application in figure 4-6. Then, you’ll code and call a
static method that determines the discount percent.

Open the application and change the if/else statement
1. Open the application named CodedInvoiceApp that’s in the ch04 directory, save it as

EnhancedInvoiceApp, and change the class name. Then, compile and run the
application to see how it works.

2. Change the if/else statement so customers of type “R” with a subtotal that is greater
than or equal to $250 but less than $500 get a 25% discount and those with a subtotal
of $500 or more get a 30% discount. Next, change the if/else statement so customers
of type “C” always get a 20% discount. Then, test the application to make sure this
works.

3. Add another customer type to the if/else statement so customers of type “T” get a
40% discount for subtotals of less than $500, and a 50% discount for subtotals of
$500 or more. Then, test the application.

4. Check your code to make sure that no discount is provided for a customer type code
that isn’t “R”, “C”, or “T”. Then, fix this if necessary.

Code and call a static method that determines the discount percent
5. Code a static method named getDiscountPercent that has two parameters: customer

type and subtotal. To do that efficiently, you can move the appropriate code from the
main method of the application into the static method and make the required
modifications.

6. Add code that calls the static method from the body of the application. Then, test to
make sure that it works.

 Student Workbook for Murach’s Java SE 6 25

Exercise 4-3 Enhance the Test Score application
In this exercise, you’ll enhance the Test Score application so it uses a while or a do-while
loop plus a for loop. After the enhancements, the console for a user’s session should look
something like this:

Enter the number of test scores to be entered: 5

Enter score 1: 75
Enter score 2: 80
Enter score 3: 75
Enter score 4: 880
Invalid entry, not counted
Enter score 4: 80
Enter score 5: 95

Score count: 5
Score total: 405
Average score: 81
Minimum score: 75
Maximum score: 95

Enter more test scores? (y/n): y

Enter the number of test scores to be entered: 3

Enter score 1: 85
Enter score 2: 95
Enter score 3: 100

Score count: 3
Score total: 280
Average score: 93.3
Minimum score: 85
Maximum score: 100

Enter more test scores? (y/n):

1. Open the EnhancedTestScoreApp in ch03 that you developed for exercise 3-2. If you
didn’t do that exercise, you can work from an earlier version like the
ModifiedTestScoreApp or the TestScoreApp that’s in ch02. Then, save the
application in the ch04 directory as EnhancedTestScoreApp, change the class name if
necessary, and compile and test the application.

2. Change the while statement to a do-while statement, and test this change. Does this
work any better than the while loop?

3. Enhance the program so it uses a while or do-while loop that controls whether the user
enters more than one set of test scores. The statements in this loop should first ask the
user how many test scores are going to be entered. Then, this number should be used in
a for loop that gets that many test score entries from the user. When the loop ends, the
program should display the summary data for the test scores, determine whether the
user wants to enter another set of scores, and repeat the while loop if necessary. After
you make these enhancements, test them to make sure they work.

4. If you didn’t already do it, make sure that the code in the for loop doesn’t count an
invalid entry. In that case, an error message should be displayed and the counter
decremented by one. Now, test to make sure this works.

26 Student Workbook for Murach’s Java SE 6

Project 4-1: Display a table of powers

Console
Welcome to the Squares and Cubes table

Enter an integer: 9

Number Squared Cubed
====== ======= =====
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

Continue? (y/n): y

Enter an integer: 3

Number Squared Cubed
====== ======= =====
1 1 1
2 4 8
3 9 27

Continue? (y/n): n

Press any key to continue . . .

Operation
• The application prompts the user to enter an integer.

• The application displays a table of squares and cubes from 1 to the value entered by
the user.

• The application prompts the user to continue.

Specifications
• The formulas for calculating squares and cubes are:

square = x * x
cube = x * x * x

• Assume that the user will enter a valid integer.

• The application should continue only if the user enters “y” or “Y” to continue.

 Student Workbook for Murach’s Java SE 6 27

Project 4-2: Calculate the factorial of a number

Console
Welcome to the Factorial Calculator

Enter an integer that's greater than 0 and less than 10: 3
The factorial of 3 is 6.

Continue? (y/n): y

Enter an integer that's greater than 0 and less than 10: 4
The factorial of 4 is 24.

Continue? (y/n): y

Enter an integer that's greater than 0 and less than 10: 9
The factorial of 9 is 362880.

Continue? (y/n): n

Press any key to continue . . .

Operation
• The application prompts the user to enter an integer from 1 to 9.

• The application displays the factorial of the number entered by the user.

• The application prompts the user to continue.

Specifications
• The exclamation point is used to identify a factorial. For example, the factorial of the

number n is denoted by n!. Here’s how you calculate the factorial of the numbers 1
through 5:
1! = 1 which equals 1
2! = 1 * 2 which equals 2
3! = 1 * 2 * 3 which equals 6
4! = 1 * 2 * 3 * 4 which equals 24
5! = 1 * 2 * 3 * 4 * 5 which equals 120

• Use a for loop to calculate the factorial.

• Assume that the user will enter valid numeric data for the length and width.

• Use the long type to store the factorial.

• The application should continue only if the user enters “y” or “Y” to continue.

Enhancement
• Test the application and find the integer for the highest factorial that can be

accurately calculated by this application. Then, modify the prompt so it prompts the
user for a number from 1 to the highest integer that returns an accurate factorial
calculation.

28 Student Workbook for Murach’s Java SE 6

Project 4-3:
Find the greatest common divisor of two positive integers

Console
Greatest Common Divisor Finder

Enter first number: 12
Enter second number: 8
Greatest common divisor: 4

Continue? (y/n): y

Enter first number: 77
Enter second number: 33
Greatest common divisor: 11

Continue? (y/n): y

Enter first number: 441
Enter second number: 252
Greatest common divisor: 63

Continue? (y/n): n

Press any key to continue . . .

Operation
• The application prompts the user to enter two numbers.

• The application displays the greatest common divisor of the two numbers.

• The application prompts the user to continue.

Specifications
• The formula for finding the greatest common divisor of two positive integers x and y

follows the Euclidean algorithm as follows:

1. Subtract x from y repeatedly until y < x.
2. Swap the values of x and y.
3. Repeat steps 1 and 2 until x = 0.
4. y is the greatest common divisor of the two numbers.

• Place the calculation for finding the divisor in a static method. You can use one loop
for step 1 of the algorithm nested within a second loop for step 3.

• Assume that the user will enter valid integers for both numbers.

• The application should continue only if the user enters “y” or “Y” to continue.

 Student Workbook for Murach’s Java SE 6 29

Chapter 5
How to validate input data
Objectives

Applied
• Given an application that uses the console to get input from the user, write code that

handles any exceptions that might occur.

• Given an application that uses the console to get input from the user and the
validation specifications for that data, write code that validates the user entries.

• Given the Java code for an application that uses any of the language elements
presented in this chapter, explain what each statement in the application does.

• Given the output for an unhandled exception, determine the cause of the exception.

Knowledge
• Explain what an exception is in Java.

• Describe the Exception hierarchy and name two of its subclasses.

• Explain what the stack trace is and how you can use it to determine the cause of an
exception.

• Explain how you use the try statement to catch an exception.

• Explain what an exception handler is and when the code in an exception handler is
executed.

• Explain how you can use methods of the Scanner class to validate data.

• Explain why it’s usually better to validate user entries than to catch and handle
exceptions caused by invalid entries.

• Describe the two types of data validation that you’re most likely to perform on a user
entry.

• Explain why you might want to use generic methods for data validation.

30 Student Workbook for Murach’s Java SE 6

Summary
• An exception is an object that’s created from the Exception class or one of its

subclasses. This object contains information about an error that has occurred.

• The stack trace is a list of methods that were called before an exception occurred.

• You can code a try statement to create an exception handler that will catch and
handle any exceptions that are thrown. This is known as exception handling.

• Data validation refers to the process of checking input data to make sure that it’s
valid.

• Range checking refers to the process of checking an entry to make sure that it falls
within a certain range of values.

Terms
exception
exception handling
throw an exception
subclass
catch an exception
stack trace
try statement

try/catch statement
try block
catch block
exception handler
data validation
range checking

 Student Workbook for Murach’s Java SE 6 31

Exercise 5-1 Add validation to the Invoice
application

In this exercise, you’ll add data validation to the Invoice application that you’ve worked
on in previous chapters. To do that, you’ll use exception handling. You’ll also write and
use some specific data validation methods.

1. Open the EnhancedInvoiceApp in the ch04 directory that you developed for exercise
4-2. If you didn’t do that exercise, open CodedInvoiceApp in the ch04 directory.
Either way, save the application as ValidatedInvoiceApp in the ch05 directory,
change the class name, and compile and run the application.

2. As you test the application, enter an invalid customer type code to see what happens.
Then, enter an invalid subtotal entry like $1000 to see what happens when the
application crashes.

Validate the customer type code
3. Modify the application so it will only accept these customer type codes: r/c/t or just

r/c, depending on which version of the program you’re modifying. It should also
discard any extra entries on the customer type line. If the user enters an invalid code,
the application should display an error message and ask the user to enter a valid code.
Now, test this enhancement.

4. Code a static method named getValidCustomerType that does the validation of step
3. This method should require one parameter that receives a Scanner object, and it
should return a valid customer type code. The method should get an entry from the
user, check it for validity, display an error message if it’s invalid, and discard any
other user entries whether or not the entry is valid. This method should continue
getting user entries until one is valid.

5. After you’ve written this method, modify the application so it uses this method.
Then, test this enhancement.

Validate the subtotal
6. Add a try statement so it catches any InputMismatchException that the nextDouble

method of the Scanner class might throw. The catch block should display an error
message and issue a continue statement to jump to the beginning of the while loop. It
should also discard the invalid entry and any other entries on the line. To do this, you
need to import the exception classes in the java.util package, and the best way to do
that is to import all of the classes in this package. Now, test this enhancement.

7. Code a static method named getValidSubtotal that uses the hasDouble method of the
Scanner class to validate the subtotal entry so the InputMismatchException won’t
occur. This method should require one parameter that receives a Scanner object, and
it should return a valid subtotal. This method should get an entry from the user, check
that it’s a valid double value, check that it’s greater than zero and less than 10000,
display appropriate error messages if it isn’t valid, and discard any other user entries
whether or not the entry is valid. This should continue until the method gets a valid
subtotal entry.

32 Student Workbook for Murach’s Java SE 6

8. After you’ve written this method, modify the code within the try statement so it uses
this method. Then, test this enhancement so you can see that an
InputMismatchException is no longer caught by the catch block. (When the code in a
try block calls a method, any exception that isn’t handled by the method is passed
back to the code in the try block.)

Discard any extra entries for the Continue prompt
9. Modify the code so the application will work right even if the user enters two or more

entries when asked if he wants to continue. To do that, you need to discard any extra
entries. Then, test this enhancement.

At this point, the application should be bulletproof. It should only accept valid entries for
customer type and subtotal, and it should work even if the user makes two or more entries
for a single prompt.

Exercise 5-2 Add validation to the Test Score
application

In this exercise, you’ll add data validation to the Test Score application that you
enhanced for chapter 4. To do that, you’ll use generic methods that you copy from the
Future Value application. This will show you that generic validation methods can be used
in a wide range of applications.

1. Open the EnhancedTestScoreApp in the ch04 directory that you developed for
exercise 4-3. Then, save the application as ValidatedTestScoreApp in the ch05
directory, change the class name, and compile and run the application to refresh your
memory about how it works.

2. Open the FutureValueValidationApp in the ch05 directory. Then, copy the generic
getInt and getIntWithinRange methods from that application and paste them into
ValidatedTestScoreApp.

3. Use the getInt and getIntWithinRange methods to validate (1) that the number of test
scores that the user enters ranges from 5 through 35, and (2) that each test score
ranges from 1 through 100. Then, test this enhancement.

4. Add code that discards any extra entries at the Continue prompt. Then, do your final
testing to make sure that the application is bulletproof.

 Student Workbook for Murach’s Java SE 6 33

Project 5-1: Add validation to an old project

Console
Welcome to the Area and Perimeter Calculator

Enter length: ten
Error! Invalid decimal value. Try again.
Enter length: -10
Error! Number must be greater than 0.0
Enter length: 100000000000000000000000
Error! Number must be less than 1000000.0
Enter length: 100
Enter width: ten
Error! Invalid decimal value. Try again.
Enter width: -10
Error! Number must be greater than 0.0
Enter width: 10000000000000000000000
Error! Number must be less than 1000000.0
Enter width: 100
Area: 10000.0
Perimeter: 400.0

Continue? (y/n):
Error! This entry is required. Try again.
Continue? (y/n): x
Error! Entry must be 'y' or 'n'. Try again.
Continue? (y/n): n

Specifications
• Add validation to any of the projects from chapters 2 through 4.

• If the application requires a numeric value, the application should continue
prompting the user until the user enters a valid number.

• If the application requires a string value, it should continue prompting the user until
the user enters a valid string value.

• The code that’s used to validate data should be stored in separate methods. For
example:
public static double getDoubleWithinRange(Scanner sc, String prompt,
 double min, double max)

public static int getIntWithinRange(Scanner sc, String prompt,
 int min, int max)

34 Student Workbook for Murach’s Java SE 6

Project 5-2: Calculate the monthly payment on a loan

Console
Welcome to the Loan Calculator

DATA ENTRY
Enter loan amount: ten
Error! Invalid decimal value. Try again.
Enter loan amount: -1
Error! Number must be greater than 0.0
Enter loan amount: 100000000000
Error! Number must be less than 1000000.0
Enter loan amount: 500000
Enter yearly interest rate: 5.6
Enter number of years: thirty
Error! Invalid integer value. Try again.
Enter number of years: -1
Error! Number must be greater than 0
Enter number of years: 100
Error! Number must be less than 100
Enter number of years: 30

FORMATTED RESULTS
Loan amount: $500,000.00
Yearly interest rate: 5.6%
Number of years: 30
Monthly payment: $2,870.39

Continue? (y/n):
Error! This entry is required. Try again.
Continue? (y/n): x
Error! Entry must be 'y' or 'n'. Try again.
Continue? (y/n): n

Press any key to continue . . .

 Student Workbook for Murach’s Java SE 6 35

Operation
• The Data Entry section prompts the user to enter values for the loan amount, yearly

interest rate, and number of years. If the user doesn’t enter data that’s valid, this
section displays an appropriate error message and prompts the user again.

• The Formatted Results section displays a formatted version of the user’s entries as
well as the formatted result of the calculation.

• The application prompts the user to continue.

Specifications
• The formula for calculating monthly payment is:

double monthlyPayment =
 loanAmount * monthlyInterestRate/
 (1 - 1/Math.pow(1 + monthlyInterestRate, months));

• The application should accept decimal entries for the loan amount and interest rate
entries.

• The application should only accept integer values for the years field.

• The application should only accept integer and decimal values within the following
ranges:
 Greater Less
 Than Than
Loan amount: 0 1,000,000
Yearly interest rate: 0 20
Years: 0 100

• The application should only accept a value of “y” or “n” at the Continue prompt.

• If the user enters invalid data, the application should display an appropriate error
message and prompt the user again until the user enters valid data.

• The code that’s used to validate data should be stored in separate methods. For
example:
public static double getDoubleWithinRange(Scanner sc, String prompt,
 double min, double max)

public static int getIntWithinRange(Scanner sc, String prompt,
 int min, int max)

36 Student Workbook for Murach’s Java SE 6

Project 5-3: Guess a number from 1 to 100

Console
Welcome to the Guess the Number Game
++++++++++++++++++++++++++++++++++++

I'm thinking of a number from 1 to 100.
Try to guess it.

Enter number: 50
You got it in 1 tries.
Great work! You are a mathematical wizard.

Try again? (y/n): y

I'm thinking of a number from 1 to 100.
Try to guess it.

Enter number: 50
Way too high! Guess again.

Enter number: 30
Too high! Guess again.

Enter number: 15
Too low! Guess again.

Enter number: 23
Too high! Guess again.

Enter number: 19
Too low! Guess again.

Enter number: 21
Too high! Guess again.

Enter number: 20
You got it in 7 tries.
Not too bad! You've got some potential.

Try again? (y/n):
Error! This entry is required. Try again.
Try again? (y/n): x
Error! Entry must be 'y' or 'n'. Try again.
Try again? (y/n): n

Bye - Come back soon!

Press any key to continue . . .

 Student Workbook for Murach’s Java SE 6 37

Operation
• The application prompts the user to enter an int value from 1 to 100 until the user

guesses the random number that the application has generated.

• The application displays messages that indicate whether the user’s guess is too high
or too low.

• When the user guesses the number, the application displays the number of guesses
along with a rating. Then, the application asks if the user wants to play again.

• When the user exits the game, the application displays a goodbye message.

Specifications
• If the user’s guess is more than 10 higher than the random number, the application

should say, “Way too high!”

• If the user’s guess is higher than the random number, the application should say,
“Too high!”

• If the user’s guess is lower than the random number, the application should say, “Too
low!”

• The message that’s displayed when the user gets the number should vary depending
on the number of guesses. For example:
Number of guesses Message
================= =======
<=3 Great work! You are a mathematical wizard.
>3 and <=7 Not too bad! You've got some potential.
>7 What took you so long? Maybe you should take
 some lessons

• When the user guesses a number, the application should only accept numbers from 1
to 100.

• When the user responds to the Play Again prompt, the application should only accept
a value of “y” or “n”.

• If the user enters invalid data, the application should display an appropriate error
message and prompt the user again until the user enters valid data.

• The code that’s used to validate data should be stored in separate methods. For
example:
public static double getDoubleWithinRange(Scanner sc, String prompt,
 double min, double max)

public static int getIntWithinRange(Scanner sc, String prompt,
 int min, int max)

• Use the random method of the java.lang.Math class to generate a random number.

38 Student Workbook for Murach’s Java SE 6

Chapter 6
How to define and use classes
Objectives

Applied
• Code the instance variables, constructors, and methods of a class that defines an

object.

• Code a class that creates objects from a user-defined class and then uses the methods
of the objects to accomplish the required tasks.

• Code a class that contains static fields and methods, and call these fields and methods
from other classes.

• Given the Java code for an application that uses any of the language elements
presented in this chapter, explain what each statement in the application does.

Knowledge
• Describe the architecture commonly used for object-oriented programs.

• Describe the concept of encapsulation and explain its importance to object-oriented
programming.

• Differentiate between an object’s identity and its state.

• Describe the basic components of a class.

• Explain what an instance variable is.

• Explain when a default constructor is used and what it does.

• Describe a signature of a constructor or method, and explain what overloading
means.

• List four ways you can use the this keyword within a class definition.

• Explain the difference between how primitive types and reference types are passed to
a method.

• Explain how static fields and static methods differ from instance variables and
regular methods.

• Explain what a static initialization block is and when it’s executed.

 Student Workbook for Murach’s Java SE 6 39

Summary
• In a three-tiered architecture, an application is separated into three layers. The

presentation layer consists of the user interface. The database layer consists of the
database and the database classes that work with it. And the middle layer provides an
interface between the presentation layer and the database layer. Its classes are often
referred to as business classes.

• The Unified Modeling Language (UML) is the standard modeling language for
working with object-oriented applications. You can use UML class diagrams to
identify the fields and methods of a class.

• Encapsulation lets you control which fields and methods within a class are exposed
to other classes. When fields are encapsulated within a class, it’s called data hiding.

• Multiple objects can be created from a single class. Each object can be referred to as
an instance of the class.

• The data that makes up an object can be referred to as its state. Each object is a
separate entity with its own state.

• A field is a variable or constant that’s defined at the class level. An instance variable
is a field that’s allocated when an object is instantiated. Each object has a separate
copy of each instance variable.

• Every class that contains instance variables has a constructor that initializes those
variables.

• When you code the methods of a class, you often code public get and set methods
that provide access to the fields of the class.

• If you want to code a method or constructor that accepts arguments, you code a list of
parameters between the parentheses for the constructor or method. For each
parameter, you must include a data type and a name.

• When coding a class, you can use the this keyword to refer to the current object.

• When Java passes a primitive type to a method, it passes a copy of the value. This is
known as passing by value. When Java passes an object (a reference type) to a
method, it passes a reference to the object. This is known as passing by reference.

• A JavaBean is a special type of Java class that follows a set of coding conventions.

• The name of a method or constructor combined with the list of parameter types is
known as the signature of the method or constructor. You can overload a method or
constructor by coding different parameter lists for constructors or methods that have
the same name.

• When you use a class that contains only static fields, static methods, and static
initialization blocks, you don’t create an object from the class. Instead, you call these
fields and methods directly from the class.

40 Student Workbook for Murach’s Java SE 6

Terms
multi-layered architecture
multi-tiered architecture
three-tiered architecture
presentation layer
database layer
middle layer
business rules layer
business class
business object
class diagram
Unified Modeling Language (UML)
field
method
encapsulation
data hiding
exposing fields and methods
class
object
object diagram
instance of a class
identity

state
access modifier
instance variable
constructor
get method
set method
read-only field
JavaBean
signature
overloading
default constructor
primitive type
reference type
pass by value
pass by reference
static field
static method
class field
class method
static initialization block

Exercise 6-1 Enhance the Line Item application
This exercise guides you through the process of testing and enhancing the Line Item
application that is presented in this chapter.

1. Open the LineItemApp, Validator, Product, LineItem, and ProductDB classes that are
in the c:\java1.6\ch06\LineItem directory and review this code.

2. Compile all five classes. If the compiler throws an error that indicates that it can’t
“resolve” a class, you need to set your class path correctly as described in chapter 1.
Once you’ve compiled these classes, run the LineItemApp class with valid codes like
“java”, “jsps”, and “mcb2” to make sure that this application works correctly. Then,
test it with an invalid code to see how that works.

3. Add another product to the ProductDB class. Its code should be “txtp”, its description
should be “TextPad”, and its price should be $20.00. Then, compile just this class,
and test the LineItemApp class again with the new product code. This shows that you
can make a change to a class without affecting the other classes that use it.

4. Add a static field to the LineItem class that will count the number of objects that are
created from the class as shown in figure 6-15. Next, add the code that increments
this field each time an object is created from this class, and add a method named
getObjectCount that gets the value of this field. Then, compile that class.

5. Modify the LineItemApp class so it uses the getObjectCount method and displays the
object count on the console after it displays each line item. Then, compile and run
that class to make sure that the changes in steps 4 and 5 work correctly.

 Student Workbook for Murach’s Java SE 6 41

Exercise 6-2 Use classes that have static methods
in the Future Value application

This exercise guides you through the process of modifying the Future Value application
so it uses classes that provide static methods.

1. Open the FutureValueValidationApp class that’s in the ch05 directory and save it as
FutureValueApp in the ch06\FutureValue directory. Then, change its class name to
FutureValueApp.

2. Start a new class named Validator and save it in the same directory. Move the
getDouble, getDoubleWithinRange, getInt, and getIntWithinRange methods into the
Validator class. Next, change the name of the getDoubleWithinRange method to
getDouble, and change the name of the getIntWithinRange method to getInt. This
overloads the getDouble and getInt methods. Then, compile this class.

3. Modify the FutureValueApp class so it uses the methods in the Validator class. Then,
compile and run that class to make sure that it works correctly.

4. Start a new class named FinancialCalculations, and save it in the same directory as
the other classes. Move the calculateFutureValue method from the FutureValueApp
class to the FinancialCalculations class, and make sure that the method is public.
Then, compile this class.

5. Modify the FutureValueApp class so it uses the static calculateFutureValue method
that’s stored in the FinancialCalculations class. Then, compile and run this class to
make sure that the application still works properly.

Exercise 6-3 Use objects in the Invoice application
In this exercise, you’ll create an Invoice class and construct objects from it as you convert
the Invoice application to an object-oriented application.

1. Open the InvoiceApp and Validator classes in the ch06\Invoice directory. This is yet
another version of the Invoice application. Then, compile and run the classes to see
how this application works.

2. Start a new class named Invoice and save it in the same directory. Then, write the
code for this class so it provides all of the data and all of the processing for an
Invoice object. Its constructor should require the subtotal and customer type as its
only parameters, and it should initialize instance variables for discount percent,
discount amount, and invoice total. Its methods should include the required get and
set methods, plus a method named getInvoice that returns a string that contains all of
the data for an invoice in a printable format. When you’re done, compile the Invoice
class.

3. Modify the code in the InvoiceApp class so it creates an Invoice object and uses its
getInvoice method to get the formatted data for invoice. That should simplify this
class considerably. Then, compile and test this class to make sure that this application
works the way it did in step 1.

42 Student Workbook for Murach’s Java SE 6

Project 6-1: Store email addresses and phone numbers

Console
Welcome to the Address Book application

1 - List entries
2 - Add entry
3 - Exit

Enter menu number: 1

Name Email Phone
------------------ ------------------ ------------------
Bill Gates bill@microsoft.com (111) 222-3333
Larry Ellison larry@sun.com (444) 555-6666
Steve Jobs steve@apple.com 777-888-9999

1 - List entries
2 - Add entry
3 - Exit

Enter menu number: 2

Enter name: Mike Murach
Enter email address: mike@murach.com
Enter phone number: 800-221-5528

This entry has been saved.

1 - List entries
2 - Add entry
3 - Exit

Enter menu number: 1

Name Email Phone
------------------ ------------------ ------------------
Bill Gates bill@microsoft.com (111) 222-3333
Larry Ellison larry@sun.com (444) 555-6666
Steve Jobs steve@apple.com 777-888-9999
Mike Murach mike@murach.com 800-221-5528

1 - List entries
2 - Add entry
3 - Exit

Enter menu number: 3

Goodbye.

Press any key to continue . . .

 Student Workbook for Murach’s Java SE 6 43

Operation
• If the user selects the first menu option, the application displays the email addresses

and phone numbers that have been saved. Then, it displays the menu again.

• If the user selects the second menu option, the application prompts the user to enter a
name, email address, and phone number. Then, it displays the menu again.

• If the user selects the third menu option, the application exits.

Specifications
• Use the AddressBookIO class that’s provided to get and save entries. This class

contains two static methods that you can use to read and write data to the
address_book.txt file. They are:
// get a String that displays all entries in columns
public static String getEntriesString()

// save an AddressBookEntry object to the file
public static boolean saveEntry(AddressBookEntry entry)

• If necessary, you can open the address_book.txt file in a text editor to debug this
application.

• Create a class named AddressBookEntry to store the data for each entry. This class
should contain these instance variables:
private String name;
private String emailAddress;
private String phoneNumber;

• And it should contain get and set methods for each of these instance variables.

• Create a class named AddressBookEntryApp. This class should display the menu and
respond to the user’s menu choices using the AddressBookEntry and AddressBookIO
classes as necessary.

• Create a class named Validator that contains static methods that can be used to
validate the data in this application. The user should only be able to select one of the
menu choices, and the user must enter some text for name, email address, and phone
number.

44 Student Workbook for Murach’s Java SE 6

Project 6-2: Calculate a circle’s circumference and area

Console
Welcome to the Circle Tester

Enter radius: 3
Circumference: 18.85
Area: 28.27

Continue? (y/n): y

Enter radius: 6
Circumference: 37.7
Area: 113.1

Continue? (y/n): n

Goodbye. You created 2 Circle object(s).

Press any key to continue . . .

Operation
• The application prompts the user to enter the radius of a circle.

• If the user enters invalid data, the application displays an appropriate error message
and prompts the user again until the user enters valid data.

• When the user enters a valid radius, the application calculates and displays the
circumference and area of the circle to the nearest 2 decimal places.

• The application prompts the user to continue.

• When the user chooses not to continue, the application displays a goodbye message
that indicates the number of Circle objects that were created by the application.

Specifications
• Create a class named Circle to store the data about this circle. This class should

contain these constructors and methods:
public Circle(double radius)
public double getCircumference()
public String getFormattedCircumference()
public double getArea()
public String getFormattedArea()
private String formatNumber(double x)
public static int getObjectCount()

• The formulas for calculating circumference and area are:
circumference = 2 * pi * radius
area = pi * radius2

• For the value of pi, use the PI constant of the java.lang.Math class.

• Create a class named CircleApp that gets the user input, creates a Circle object, and
displays the circumference and area.

• Create a class named Validator like the one shown in chapter 6 and use its static
methods to validate the data in this application.

 Student Workbook for Murach’s Java SE 6 45

Project 6-3: Roll the dice

Console
Welcome to the Paradise Roller application

Roll the dice? (y/n): y

Roll 1:
2
5
Craps!

Roll again? (y/n): y

Roll 2:
2
1

Roll again? (y/n): y

Roll 3:
4
6

Roll again? (y/n): y

Roll 4:
6
6
Box cars!

Roll again? (y/n): y

Roll 5:
1
1
Snake eyes!

Roll again? (y/n): n

Press any key to continue . . .

Operation
• If the user chooses to roll the dice, the application rolls two six-sided dice, displays

the results of each, and asks if the user wants to roll again.

46 Student Workbook for Murach’s Java SE 6

Specifications
• Create a class named Die to store the data about each die. This class should contain

these constructors and methods:
public Die() // default to a six-sided die
public Die(int sides) // allow a variable number of sides
public void roll()
public int getValue()

• Create a class named PairOfDice to store two dice. This class should contain two
instance variables of the Die type, an instance variable that holds the sum of the two
dice, and these constructors and methods:
public PairOfDice() // default to six-sided dice
public PairOfDice(int sides) // allow a variable number of sides
public void roll()
public int getValue1() // get value of die1
public int getValue2() // get value of die2
public int getSum() // get the sum of both dice

• You can use the random method of the Math class to generate a random number from
1 to the number of sides on a die like this:
int value = (int) (Math.random() * sides);

• Create a class named DiceRollerApp that uses the PairOfDice class to roll the dice.
This class should display special messages for craps (sum of both dice is 7), snake
eyes (double 1’s), and box cars (double 6’s). For this application, assume that two
six-sided dice are used.

• Create a class named Validator that contains static methods that can be used to
validate the data in this application.

 Student Workbook for Murach’s Java SE 6 47

Chapter 7
How to work with inheritance
Objectives

Applied
• Given the specifications for an application that uses inheritance, create the required

classes.

• Given the specifications for an abstract class or method, write the code for the class
and the class that inherits it.

• Given the specifications for a final class, method, or parameter, write the code for the
class and the class that inherits it.

• Write the code necessary for a class to override the equals method of the Object class
so you can test two objects created from that class for equality based on the data they
contain.

• Given the Java code for an application that uses any of the language elements
presented in this chapter, explain what each statement in the application does.

Knowledge
• In general, explain how inheritance works.

• Explain what it means for a subclass to extend a superclass.

• Explain how inheritance is used within the Java API classes.

• Explain why methods such as toString and equals are available to all objects and
when you might override these methods.

• Describe two ways that you can use inheritance in your applications.

• Describe the accessibility that’s provided by the access modifiers you can use for the
members of a class.

• Explain what polymorphism is and how it works.

• Describe two ways that you can get information about an object’s type.

• Explain when it’s necessary to use explicit casting when working with objects
created from derived classes.

• Explain how abstract classes and methods work.

• Explain how final classes, methods, and parameters work.

48 Student Workbook for Murach’s Java SE 6

Summary
• Inheritance lets you create a new class based on an existing class. The existing class

is called the superclass, base class, or parent class, and the new class is called the
subclass, derived class, or child class.

• A subclass inherits all of the fields and methods of its superclass. The subclass can
extend the superclass by adding its own fields and methods, and it can override a
method with a new version of the method.

• All classes inherit the java.lang.Object class, which provides methods such as
toString, equals, and getClass.

• You can use access modifiers to limit the accessibility of the fields and methods
declared by a class. Protected members can be accessed only by classes in the same
package or by subclasses.

• In a subclass, you can use the super keyword to access the fields, constructors, and
methods of the superclass.

• Polymorphism is a feature of inheritance that lets you treat subclasses as though they
were their superclass.

• You can call the getClass method from any object to get a Class object that contains
information about that object.

• You can use the instanceof operator to check if an object is an instance of a particular
class.

• Java can implicitly cast a subclass type to its superclass type, but you must use
explicit casting to cast a superclass type to a subclass type.

• Abstract classes provide code that can be used by subclasses. In addition, they can
specify abstract methods that must be implemented by subclasses.

• You can use the final keyword to declare final classes, final methods, and final
parameters. No class can inherit a final class, no method can override a final method,
and no statement can assign a new value to a final parameter.

Terms
inheritance
subclass
derived class
child class
superclass
parent class
base class
extending a superclass
overriding a method
frame
inheritance hierarchy
Abstract Window Toolkit (AWT)
Swing

hash code
garbage collector
access modifier
protected member
polymorphism
late binding
runtime type identification (RTTI)
abstract class
abstract method
final class
final method
final parameter

 Student Workbook for Murach’s Java SE 6 49

Exercise 7-1 Look at a class that inherits the
JFrame class

This exercise lets you view and run a class that inherits the javax.swing.JFrame class.

1. Open the ProductFrame class that’s stored in the c:\java1.6\ch07\FrameTest
directory. When you review this code, notice how it inherits the JFrame class and
calls methods inherited from this class. In addition, note that this class contains a
main method that creates an instance of the ProductFrame and displays that instance.

2. Compile and run this class. This should display a frame. When you click on its close
button, the frame should close. In section 4, you’ll learn more about working with
frames like this one. In particular, you’ll learn how to add components such as
buttons, labels, and text boxes.

3. Make a list of all the methods of the JFrame class that are called in this application.
Then, using the documentation for the JFrame class from the Java API
documentation, indicate whether the method is declared by the JFrame class or
inherited from one of its superclasses. If the method is inherited, indicate which class
it is inherited from.

4. Use your research from step 3 to determine which class inherited by the JFrame class
actually declares the setVisible method. Then, modify the code in the main method so
that the frame variable is declared as that type rather than as a JFrame type. Compile
and run the application to verify that it still works properly.

Exercise 7-2 Create a Product application that
uses inheritance

In this exercise, you’ll create a Product application like the one presented in this chapter
that uses inheritance. However, you will add an additional kind of product: compact
discs. To make this application easier to develop, we’ll give you most of the starting
classes.

Create a new subclass named CompactDisc
1. Open the classes in the c:\java1.6\ch07\Product directory and review the code.

2. Add a class named CompactDisc that inherits the Product class. This new class
should work like the Book and Software classes, but it should include public get and
set methods for a private instance variable named artist. In addition, it should include
a toString method that overrides the toString method in the Product class. This
method should append the artist name to the end of the string.

3. Compile the CompactDisc class to make sure that it doesn’t contain any syntax
errors.

50 Student Workbook for Murach’s Java SE 6

Modify the ProductDB class so it returns a CompactDisc object
4. Modify the ProductDB class so it creates at least one CompactDisc object. For

example, this object might contain the following information:
Code: sgtp
Description: Sgt. Pepper's Lonely Hearts Club Band
Price: $15.00

Artist: The Beatles

5. Compile this class and run the application to make sure it works.

Add a protected variable
6. Open the Product class and change the access modifier for the count variable from

public to protected.

7. Compile this class, and then run the application one more time to make sure that the
count is maintained properly.

Exercise 7-3 Modify the Product class to use the
abstract keyword

In this exercise, you’ll change the Product class in the Product application to an abstract
class to see how that works. Then, you’ll add an abstract method and implement it in the
Book, Software, and CompactDisc subclasses.

Change the Product class to an abstract class
1. Still working with the Product application of exercise 7-2, add the abstract keyword

to the Product class declaration and compile the class.

2. Open the ProductApp class, and add this statement before the statement that calls the
getProduct method:
Product pTest = new Product();

3. Compile the ProductApp class. You should get a message that says that the Product
class is declared as abstract and cannot be instantiated.

4. Delete the statement you just added and compile the class again. Then, run the
application to make sure it works.

Add an abstract method to the Product class
5. Add an abstract method named getDisplayText to the Product class. This method

should accept no parameters, and it should return a String object. Compile this class.

6. Rename the toString methods in the Book, Software, and CompactDisc classes to
getDisplayText, and compile these classes.

7. Modify the ProductApp class so it calls the getDisplayText method of a product
object instead of the toString method. Then, compile this class, and run the
application to be sure it works correctly.

 Student Workbook for Murach’s Java SE 6 51

Exercise 7-4 Modify the Book class to use the
final keyword

In this exercise, you’ll change the Book class in the Product application to a final class to
see that a final class can’t be inherited. Then, you’ll create a final method to see that it
can’t be overridden.

Change the Book class to a final class
1. Still working with the Product application, add the final keyword to the Book class

declaration and compile this class.

2. Create a class named UsedBook that inherits the Book class. You don’t need to
include any code in the body of this class. Then, compile this class. When you do,
you should get a message that says the Book class can’t be inherited because that
class is final.

Add a final method
3. Remove the final keyword from the Book class declaration. Then, add the final

keyword to the getDisplayText method of the Book class and compile this class.

4. Add a getDisplayText method to the UsedBook class to override the getDisplayText
method of the Book class. You don’t need to include any code in the body of this
method. Then, compile this class. When you do, you should get a message that says
the getDisplayText method can’t be overridden because that method is final.

Exercise 7-5 Code an equals method for the
Product and LineItem classes

In this exercise, you’ll add an equals method to the Product and LineItem classes that you
can use to compare the instance variables of two objects.

1. Open the EqualsTestApp class in the c:\java1.6\ch07\EqualsTest directory. This
application creates and compares two Product objects and two LineItem objects using
the equals method. Review this code to see how it works.

2. Compile the EqualsTestApp class, and run the application. Since the equals method
isn’t overridden in the Product or LineItem class, the output from this application
should indicate that the comparisons are based on object references and not the data
the objects contain.

3. Open the Product class, and add an equals method like the one shown in figure 7-15.
Then, compile the Product class, and run the EqualsTestApp class again. This time,
the output should indicate that the products are being compared based on their data
and not their references.

4. Repeat step 2 for the LineItem class. This time, the comparisons for both the products
and line items should be based on their data.

52 Student Workbook for Murach’s Java SE 6

Project 7-1: Create an object-oriented validation class

Console
Welcome to the Validation Tester application

Int Test
Enter an integer between -100 and 100: x
Error! Invalid integer value. Try again.
Enter an integer between -100 and 100: -101
Error! Number must be greater than -101
Enter an integer between -100 and 100: 101
Error! Number must be less than 101
Enter an integer between -100 and 100: 100

Double Test
Enter any number between -100 and 100: x
Error! Invalid decimal value. Try again.
Enter any number between -100 and 100: -101
Error! Number must be greater than -101.0
Enter any number between -100 and 100: 101
Error! Number must be less than 101.0
Enter any number between -100 and 100: 100

Required String Test
Enter your email address:
Error! This entry is required. Try again.
Enter your email address: joelmurach@yahoo.com

String Choice Test
Select one (x/y):
Error! This entry is required. Try again.
Select one (x/y): q
Error! Entry must be 'x' or 'y'. Try again.
Select one (x/y): x

Press any key to continue . . .

Operation
• This application prompts the user to enter a valid integer within a specified range, a

valid double within a specified range, a required string, and one of two strings. If an
entry isn’t valid, the application displays an appropriate error message.

 Student Workbook for Murach’s Java SE 6 53

Specifications
• Create a class named OOValidator that contains these constructors and methods:

public OOValidator(Scanner sc)
public int getInt(String prompt)
public int getIntWithinRange(String prompt, int min, int max)
public double getDouble(String prompt)
public double getDoubleWithinRange(String prompt,
 double min, double max)

You can use the Validator class that’s provided as a starting point for coding the
methods in this class.

• Create a class named MyValidator that extends the OOValidator class. This class
should add two new methods:
public String getRequiredString(String prompt)
public String getChoiceString(String prompt,
 String s1, String s2)

• Create a class named ValidatorTestApp and use it to test the methods in the
Validator, OOValidator, and MyValidator classes.

54 Student Workbook for Murach’s Java SE 6

Project 7-2: Work with customer and employee data

Console
Welcome to the Person Tester application

Create customer or employee? (c/e): c

Enter first name: Frank
Enter last name: Jones
Enter email address: frank44@hotmail.com
Customer number: M10293

You entered:
Name: Frank Jones
Email: frank44@hotmail.com
Customer number: M10293

Continue? (y/n): y

Create customer or employee? (c/e): e

Enter first name: Anne
Enter last name: Prince
Enter email address: anne@murach.com
Social security number: 111-11-1111

You entered:
Name: Anne Prince
Email: anne@murach.com
Social security number: 111-11-1111

Continue? (y/n): n

Press any key to continue . . .

Operation
• The application prompts the user to enter a customer or an employee.

• If the user selects customer, the application asks for name, email, and customer
number.

• If the user selects employee, the application asks for name, email, and social security
number.

• When the user finishes entering data for a customer or employee, the application
displays the data that the user entered.

 Student Workbook for Murach’s Java SE 6 55

Specifications
• Create an abstract Person class that stores first name, last name, and email address.

This class should provide a no-argument constructor, get and set methods for each
piece of data, and it should override the toString method so it returns the first name,
last name, and email fields in this format:
Name: Frank Jones
Email: frank44@hotmail.com

• In addition, it should contain an abstract method named getDisplayText that returns a
string.

• Create a class named Customer that inherits the Person class. This class should store
a customer number, it should provide get and set methods for the customer number, it
should provide a no-argument constructor, and it should provide an implementation
of the getDisplayText method. The getDisplayText method should return a string that
consists of the string returned by the toString method of the Person class appended
with the Customer number like this:
Name: Frank Jones
Email: frank44@hotmail.com
Customer number: M10293

• Create a class named Employee that inherits the Person class. This class should store
a social security number, it should provide get and set methods for the social security
number, it should provide a no-argument constructor, and it should provide an
implementation of the getDisplayText method. The getDisplayText method should
return a string that consists of the string returned by the toString method of the
Person class appended with the Employees social security number like this:
Name: Anne Prince
Email: anne@murach.com
Social security number: 111-11-1111

• Create a class named PersonApp that prompts the user as shown in the console
output. This class should create the necessary Customer and Employee objects from
the data entered by the user, and it should use these objects to display the data to the
user. To print the data for an object to the console, this application should use a static
method named print that accepts a Person object.

• Use the Validator class or a variation of it to validate the user’s entries.

56 Student Workbook for Murach’s Java SE 6

Chapter 8
How to work with interfaces
Objectives

Applied
• Create and implement an interface and use the resulting class in an application.

• Create a class that inherits another class and implements one or more interfaces.

• Create an interface that inherits other interfaces.

• Implement the Cloneable interface for any classes that you’ve created and then use
those classes in an application.

• Given the Java code for an application that uses any of the language elements
presented in this chapter, explain what each statement in the application does.

Knowledge
• In general, explain how interfaces work.

• Describe two advantages of using an interface over using an abstract class.

• Name two general-purpose interfaces defined by the Java API and explain what they
do.

• Explain what a tagging interface is and how it’s used.

• Describe two ways that you can use an interface as a parameter.

• Explain how you can use interfaces and the factory pattern to separate the
presentation layer of an application from the database layer.

• Explain the difference between a mutable object and an immutable object.

Summary
• An interface is a special type of coding element that can contain static constants and

abstract methods. Although a class can only inherit one other class, it can implement
more than one interface.

• To implement an interface, a class must implement all the abstract methods defined
by the interface. An interface can also inherit other interfaces, in which case the
implementing class must also implement all the methods of the inherited interfaces.

• An interface defines a Java type. Because of that, you can use an object that’s created
from a class that implements an interface anywhere that interface is expected.

• When you clone an object, you make an identical copy of the object.

• Before you can use the clone method of the Object class, you need to implement the
Cloneable interface. Then, you can override the clone method so it is public and so it
works correctly with mutable objects.

 Student Workbook for Murach’s Java SE 6 57

Terms
multiple inheritance
interface
implement an interface
tagging interface
factory pattern
clone an object
immutable object
mutable object

58 Student Workbook for Murach’s Java SE 6

Exercise 8-1 Create and work with interfaces
In this exercise, you’ll create and implement the DepartmentConstants interface presented
in this chapter. You’ll also create and implement an interface named Displayable that’s
similar to the Printable interface.

Create the interfaces
1. Open the classes in the c:\java1.6\ch08\DisplayableTest directory.

2. Add an interface named DepartmentConstants that contains the three constants shown
in figure 8-4. Compile the interface.

3. Add an interface named Displayable. This interface should contain a single method
named getDisplayText that returns a String. Compile this interface.

Implement the interfaces
4. Edit the Product class so it implements the Displayable interface. The getDisplayText

method in this class should format a string that can be used to display the product
information. When you’re done, compile this class.

5. Edit the Employee class so it implements the DepartmentConstants and Displayable
interfaces. The getDisplayText method in this class should work like the one in the
Product class, and it should use the constants in the DepartmentConstants interface to
include the department name in the return value. When you’re done, compile this
class.

Use the classes that implement the interfaces
6. Display the DisplayableTestApp class.

7. Add code to this class that creates an Employee object, assigns it to a Displayable
variable, and displays the information in the Employee object at the console. To get
the information for an employee, you’ll need to use the getDisplayText method of the
Displayable interface.

8. Compile and run the application to make sure that it displays the employee
information.

9. Repeat steps 7 and 8 for a Product object.

Exercise 8-2 Use an interface as a parameter
In this exercise, you’ll use the Displayable interface you created and implemented in
exercise 8-1 as a method parameter.

1. Open the classes in the c:\java 1.6\ch08\DisplayableTest directory and display the
DisplayableTestApp class.

2. Add a method named displayMultiple that accepts a Displayable object and an
integer and returns a string. The string returned by this method should contain the
number of occurrences specified by the int parameter of the object specified by the
Displayable parameter.

 Student Workbook for Murach’s Java SE 6 59

3. Modify the code in the main method so that it uses the displayMultiple method to
display one occurrence of the employee information and two occurrences of the
product information.

4. Compile and run the application to make sure it works correctly.

Exercise 8-3 Add an update function to the
Product Maintenance application

In this exercise, you’ll review the Product Maintenance application presented in this
chapter. Then, you’ll add an update function to this application.

Review and run the application
1. Open the files in the c:\java1.6\ch08\ProductMaintenance directory.

2. Review the code in each file to see how it works.

3. Run the application and try each of its functions. When you’re comfortable with how
it works, exit from the application.

Modify the application so it includes an update function
4. Add code to the ProductMaintApp class that lets the user update an existing product.

To do that, you’ll need to add an update command to the list of commands, and
you’ll need to add an updateProduct method that’s executed if the user enters this
command.

5. The updateProduct method should start by getting a valid product code from the user.
Then, it should let the user update either the product’s description or price. After the
description or price of the Product object is updated, the updateProduct method
should call the updateProduct method of the ProductDAO object to update the
product.

6. Compile and run the ProductMaintApp class to make sure it works correctly.

Exercise 8-4 Implement the Cloneable interface
In this exercise, you’ll implement the Cloneable interface for the Product and LineItem
classes.

1. Open the classes in the c:\java1.6\ch08\CloneableTest directory. Display the
ProductCloneApp class and review its code. Then, try to compile this class. The
compilation will fail because the Cloneable interface hasn’t been implemented in the
Product class.

2. Implement the Cloneable interface for the Product class. Then, compile the Product
and ProductCloneApp classes. If you implemented the Cloneable interface correctly,
the ProductCloneApp class should compile.

3. Run the ProductCloneApp class to make sure it works correctly.

4. Repeat steps 1 through 3 for the LineItemCloneApp and LineItem classes.

60 Student Workbook for Murach’s Java SE 6

Project 8-1: Count alligators and clone sheep

Console
Counting alligators...

1 alligator
2 alligator
3 alligator

Counting sheep...

1 Blackie
2 Blackie

1 Dolly
2 Dolly
3 Dolly

1 Blackie

Press any key to continue . . .

Operation
• This application uses an Alligator class that implements a Countable interface to

display Alligator objects as shown above.

• This application uses a Sheep class that implements a Countable interface and the
Cloneable interface to display and clone Sheep objects as shown above.

Specifications
• Create an interface named Countable that can be used to count an object. This

interface should include these methods:
void incrementCount()
void resetCount()
int getCount()
String getCountString()

• Create a class named Alligator that implements the Countable interface. This class
should include an instance variable that stores the count and a method that returns the
formatted count.

• Create a class named CountUtil. This class should include a static method that lets
you count any Countable objects a specified number of times. For example:
public static void count(Countable c, int maxCount)

• Create a class named CountTestApp that uses the CountUtil class to count an
Alligator object 3 times as shown above.

• Create a class named Sheep that implements the Countable and Cloneable interfaces.
This class should include an instance variable that stores the count and the name of
the sheep, and it should provide methods that can set and get the name of the sheep.

• Modify the CountTestApp class so it (a) counts the first sheep 2 times, (b) clones the
first sheep, changes the name, and counts it 3 times, and (c) counts the first sheep
again 1 time.

 Student Workbook for Murach’s Java SE 6 61

Project 8-2:
Calculate the monthly balances of two bank accounts

Console
Welcome to the Account application

Starting Balances
Checking: $1,000.00
Savings: $1,000.00

Enter the transactions for the month

Withdrawal or deposit? (w/d): w
Checking or savings? (c/s): c
Amount?: 500

Continue? (y/n): y

Withdrawal or deposit? (w/d): d
Checking or savings? (c/s): s
Amount?: 200

Continue? (y/n): n

Monthly Payments and Fees
Checking fee: $1.00
Savings interest payment: $12.00

Final Balances
Checking: $499.00
Savings: $1,212.00

Press any key to continue . . .

Operation
• The application begins by displaying the starting balances for a checking and savings

account.

• The application prompts the user to enter the information for a transaction, including
whether a withdrawal or deposit is to be made, whether the transaction will be posted
to the checking or savings account, and the amount of the transaction.

• When the user finishes entering deposits and withdrawals, the application displays
the fees and payments for the month followed by the final balances for the month.

62 Student Workbook for Murach’s Java SE 6

Specifications
• Create interfaces named Depositable, Withdrawable, and Balanceable that specify the

methods that can be used to work with accounts. The Depositable interface should
include this method:
public void deposit(double amount)

The Withdrawable interface should include this method:
public void withdraw(double amount)

And the Depositable interface should include these methods:
public double getBalance()
public void setBalance(double amount)

• Create a class named Account that implements all three of these interfaces. This class
should include an instance variable for the balance.

• Create a class named CheckingAccount that inherits the Account class. This class
should include an instance variable for the monthly fee that’s initialized to the value
that’s passed to the constructor. This class should also include methods that subtract
the monthly fee from the account balance and return the monthly fee.

• Create a class named SavingsAccount that inherits the Account class. This class
should include instance variables for the monthly interest rate and the monthly
interest payment. The monthly interest rate should be initialized to the value that’s
passed to the constructor. The monthly interest payment should be calculated by a
method that applies the payment to the account balance. This class should also
include a method that returns the monthly interest payment.

• Create a class named Transactions that contains two static methods for depositing and
withdrawing funds from either type of account:
public class Transactions
{
 public static void deposit(Depositable account,
 double amount)
 {
 account.deposit(amount);
 }

 public static void withdraw(Withdrawable account,
 double amount)
 {
 account.withdraw(amount);
 }
}

• Create a class named AccountApp that prompts the user for a transaction, posts the
transaction, and displays the information shown in the console output. Create the
necessary objects for each transaction, and post the transaction using the appropriate
method of the Transactions class.

• Use the Validator class or a variation of it to validate the user’s entries. This
validation code should not allow the user to withdraw more than the current account
balance.

 Student Workbook for Murach’s Java SE 6 63

Project 8-3: Reduce the linkage to the presentation layer

Console
Welcome to the Console Tester application

Int Test
Enter an integer between -100 and 100: 50

Double Test
Enter any number between -100 and 100: 50

Required String Test
Enter your email address: joel@murach.com

String Choice Test
Select one (x/y): x

Press any key to continue . . .

Operation
• This application prompts the user to enter a valid integer within a specified range, a

valid double within a specified range, a required string, and one of two strings. If a
user entry isn’t valid, the application displays an appropriate error message.

Specifications
• Create an interface named ConsoleOutput that specifies the methods that can be used

to get input from the user as follows:
void print(String s)
void println(String s)
void println()

• Create an interface named ConsoleInput that specifies the methods that can be used
to get input from the user as follows:
int getInt(String prompt);
int getIntWithinRange(String prompt, int min, int max);

double getDouble(String prompt);
double getDoubleWithinRange(String prompt, double min, double max);

String getRequiredString(String prompt);
String getChoiceString(String prompt, String s1, String s2);

• Create an interface named ConsoleIO that inherits the ConsoleInput and
ConsoleOutput classes.

• Create a class named MyConsole that implements the ConsoleIO interface. The
constructor for this class should create an instance of the Scanner class that gets input
from the standard input stream. The methods for this class should let you get valid
input from the user and display output to the user.

• Code an IOFactory class that contains a method named getConsoleIO that returns an
instance of a class that implements the ConsoleIO interface. For this project, return
an instance of the MyConsole class.

64 Student Workbook for Murach’s Java SE 6

• Create a ConsoleTestApp class that prompts the user as shown in the console output.
This class should use the IOFactory class to get a ConsoleIO object. Then, this class
should use the methods of the ConsoleIO object to print output to the console and to
get input from the console. The code in this class shouldn’t use the Scanner class or
the System.out object directly.

Enhancements
• Add methods to the ConsoleInput and ConsoleOutput interfaces so that they provide

more input and output possibilities. For example, you could include a method in the
ConsoleInput interface that accepts a prompt and three string values. Then,
implement these methods in any classes that implement the ConsoleIO interface.

• Code a class named JConsole that implements the ConsoleIO interface by using the
showInputDialog method of the JOptionPane class. (You’ll have to research this
method on your own.) Then, edit and recompile the IOFactory class so that the
ConsoleTestApp uses the new class.

 Student Workbook for Murach’s Java SE 6 65

Chapter 9
Other object-oriented programming skills
Objectives

Applied
• Add two or more classes to a package and make the classes in that package available

to other classes.

• Add javadoc comments to the classes in one or more packages and generate the
documentation for those packages.

• Use your web browser to view the documentation you added to a package.

• Code more than one class per file. When necessary, use nested classes.

• Declare and use an enumeration.

• Enhance an enumeration by adding methods that override the methods of the Java
and Enum classes. Use methods of the enumeration constants when necessary.

• Use a static import to import the constants of an enumeration or the static fields and
methods of a class.

Knowledge
• List three reasons that you might store classes in a package.

• Describe the general procedure for creating a directory structure for a package.

• Explain why you might add javadoc comments to the packages you create.

• Explain the purpose of using HTML and javadoc tags within a javadoc comment.

• Explain when you might code two or more classes in the same file and describe the
advantage and disadvantage of doing that.

• Describe the difference between an inner class and a static inner class in terms of
how they’re related to the outer class.

• Explain what a local class is.

• Explain what an enumeration is and how you use one.

• Explain what static imports are and how you use them.

66 Student Workbook for Murach’s Java SE 6

Summary
• You can organize the classes in your application by using a package statement to add

them to a package. Then, you can use import statements to make the classes in that
package available to other classes.

• You can use javadoc comments to document a class and its fields, constructors, and
methods. Then, you can use the javadoc command to generate HTML-based
documentation for your class.

• When two or more classes are closely related, it sometimes makes sense to store them
all in one file or to nest them.

• You can use an enumeration to define a set of related constants as a type. Then, you
can use the constants in the enumeration anywhere the enumeration is allowed.

• You can use static imports to import the constants of an enumeration or the static
fields and methods of a class. Then, you can refer to the constants, fields, and
methods without qualification.

Terms
Java Archive (JAR) file
javadoc comment
HTML tag
javadoc tag
nested classes
outer class
inner class

static inner class
member class
local class
emumeration
type-safe
static import

Exercise 9-1 Package the classes in an application
This exercise guides you through the process of organizing the Product, LineItem,
ProductDB, and Validator classes into packages. Then, it shows you how to modify the
LineItemApp class so it uses those packages.

1. Copy the java files for the LineItemApp, LineItem, Product, ProductDB, and
Validator classes from the c:\java1.6\ch06\LineItem directory to the
c:\java1.6\ch09\LineItem directory.

2. Create subdirectories named murach\business, murach\database, and
murach\presentation. Then, move the LineItem, Product, ProductDB, and Validator
files into their appropriate subdirectories as shown in figure 9-1.

3. Add package and import statements to the Product, LineItem, ProductDB, and
Validator classes as shown in figure 9-1.

4. Use the command prompt to compile these classes as shown in figure 9-2. Be sure to
compile the Product class before you compile the ProductDB class. When you
compile the LineItem class, it should compile both the Product and LineItem classes.

5. Open the LineItemApp class that’s stored in the c:\java1.6\ch09\LineItem directory,
and add import statements to import the three packages you just created. Then,
compile and run this class to make sure the application is working correctly. When
you’re sure it is, close the class.

 Student Workbook for Murach’s Java SE 6 67

6. Open the LineItemApp class that’s stored in the c:\java1.6\ch09\LineItemTester
directory, and try to compile this class. You should get several compile-time errors.
That’s because the LineItemApp class can’t find the three packages even though it
includes the proper import statements.

7. Use a command window to create a JAR file named murach.jar that contains all three
packages as shown in figure 9-3. Then, move the murach.jar file to the \jre\lib\ext
subdirectory of your SDK directory.

8. Try to compile the LineItemApp class that’s stored in the LineItemTester directory
again. This time, it should compile. Then, run this class to make sure it works
correctly.

Exercise 9-2 Document the murach packages
This exercise guides you through the process of adding javadoc comments to the Product
and LineItem classes and using the javadoc tool to generate the API documentation for all
the murach packages.

1. Open the Product and LineItem classes that are stored in the
c:\java1.6\ch09\LineItem\murach\business directory.

2. Add javadoc comments like the ones shown in figure 9-4 for the LineItem class and
its constructors and methods. Then, compile the class.

3. Add javadoc comments like the ones shown in figure 9-5 for the Product class and its
constructor and methods. Then, compile the class.

4. Open a command window and use the javadoc command to generate the
documentation for the murach.business, murach.database, and murach.presentation
classes as shown in figure 9-6. When you’re done, this documentation should be
stored in the c:\java1.6\ch09\LineItem\docs directory.

5. Start your web browser, navigate to the c:\java1.6\ch09\LineItem\docs directory, and
open the index.html page.

6. Click on the Validator class in the lower left frame to see the documentation that’s
generated for a class by default.

7. Click on the murach.business package to display just the LineItem and Product
classes in the lower left frame. Then, click on the LineItem class to display its
documentation. Notice that the details for the methods don’t include a description of
the parameters or return values.

8. Click on the Product class to display its documentation. Scroll to the method details
to see how the descriptions of the parameters and return values are displayed.

9. When you’re done experimenting, close your web browser.

68 Student Workbook for Murach’s Java SE 6

Exercise 9-3 Code more than one file per class
In this exercise, you’ll combine the code for two classes into a single file.

1. Open the code for the Customer and Address classes that are stored in the
c:\java1.6\ch09\Classes directory. Cut the code from the Address class and paste it at
the end of the Customer class. Delete the public modifier from the declaration of the
Customer class, and save the file.

2. Delete the Address.java file. At this point, the c:\java1.6\ch09\Classes directory
should only contain the Customer.java file and no .class files.

3. Compile the Customer class. Then, view the files in the c:\java1.6\ch09\Classes
directory. Now, there should be .class files for both the Customer and Address
classes. This shows that the Customer.java file now stores two classes.

Exercise 9-4 Create and use an enumeration
In this exercise, you’ll create an enumeration and then use it in a test application.

1. Create an enumeration named CustomerType, and save it in the
c:\java1.6\ch09\Enumeration directory. This enumeration should contain constants
that represent three types of customers: retail, trade, and college.

2. Open the CustomerTypeApp class in the c:\java 1.6\ch09\Enumeration directory.
Then, add a method to this class that returns a discount percent (.10 for retail, .30 for
trade, and .20 for college) depending on the CustomerType variable that’s passed to
it.

3. Add code to the main method that declares a CustomerType variable, assigns a
customer type to it, gets the discount percent for that customer type, and displays the
discount percent. Compile and run the application to be sure that it works correctly.

4. Add a statement to the main method that displays the string returned by the toString
method of the customer type. Then, compile and run the application again to see the
result of this method.

5. Add a toString method to the CustomerType enumeration. This method should return
a string that contains “Retail customer,” “Trade customer,” or “College customer”
depending on the customer type. Compile this class, then run the CustomerTypeApp
class again to view the results of the toString method.

 Student Workbook for Murach’s Java SE 6 69

Project 9-1:
Create, package, and document the Console class

Console
Welcome to the Console Tester application

Int Test
Enter an integer between -100 and 100:
Error! This entry is required. Try again.
Enter an integer between -100 and 100: x
Error! Invalid integer value. Try again.
Enter an integer between -100 and 100: -101
Error! Number must be greater than -101
Enter an integer between -100 and 100: 101
Error! Number must be less than 101
Enter an integer between -100 and 100: 50

Double Test
Enter any number between -100 and 100:
Error! This entry is required. Try again.
Enter any number between -100 and 100: x
Error! Invalid decimal value. Try again.
Enter any number between -100 and 100: -101
Error! Number must be greater than -101.0
Enter any number between -100 and 100: 101
Error! Number must be less than 101.0
Enter any number between -100 and 100: 50

Required String Test
Enter your email address:
Error! This entry is required. Try again.
Enter your email address: joelmurach@yahoo.com

String Choice Test
Select one (x/y):
Error! This entry is required. Try again.
Select one (x/y): q
Error! Entry must be 'x' or 'y'. Try again.
Select one (x/y): x

Press any key to continue . . .

Operation
• This application prompts the user to enter a valid integer within a specified range, a

valid double within a specified range, a required string, and one of two strings. If a
user entry isn’t valid, the application displays an appropriate error message.

70 Student Workbook for Murach’s Java SE 6

Specifications
• Create a class named Console that can be used to display output to the user and get

input from the user. Feel free to reuse your best code from any previous exercises or
projects. At a minimum, this class should include these methods:
// for output
public void print(String s);
public void println(String s);
public void println();

// for input
public String getRequiredString(String prompt);
public String getChoiceString(String prompt, String s1, String s2);
public int getInt(String prompt);
public int getIntWithinRange(String prompt, int min, int max);
public double getDouble(String prompt);
public double getDoubleWithinRange(String prompt, double min, double
max);

• Create a class named ConsoleTestApp that tests the Console application to make sure
it’s working correctly as shown in the console output. Feel free to reuse your best
code from any previous exercises or projects.

• Store the Console class in a package named
yourLastName.util

• Then, add an import statement for this package to the ConsoleTestApp class.

• Add javadoc comments to the Console class. These comments should document the
purpose, author, and version of the class. It should also document the function of
each method, including any parameters accepted by the method and any value it
returns.

• Generate the documentation for the Console class and store it in a directory named
docs that is a subdirectory of the root directory for this project.

 Student Workbook for Murach’s Java SE 6 71

Project 9-2: Create the Roshambo game

Console
Welcome to the game of Roshambo

Enter your name: Joel

Would you like to play Bart or Lisa? (B/L): b

Rock, paper, or scissors? (R/P/S): r

Joel: rock
Bart: rock
Draw!

Play again? (y/n): y

Rock, paper, or scissors? (R/P/S): p

Joel: paper
Bart: rock
Joel wins!

Play again? (y/n): y

Rock, paper, or scissors? (R/P/S): s

Joel: scissors
Bart: rock
Bart wins!

Play again? (y/n): n

Press any key to continue . . .

Operation
• The application prompts the player to enter a name and select an opponent.

• The application prompts the player to select rock, paper, or scissors. Then, the
application displays the player’s choice, the opponent’s choice, and the result of the
match.

• The application continues until the user doesn’t want to play anymore.

• If the user makes an invalid selection, the application should display an appropriate
error message and prompt the user again until the user makes a valid selection.

72 Student Workbook for Murach’s Java SE 6

Specifications
• Create an enumeration named Roshambo that stores three values: rock, paper, and

scissors. This enumeration should include a toString method that can convert the
selected value to a string.

• Create an abstract class named Player that stores a name and a Roshambo value. This
class should include an abstract method named generateRoshambo that allows an
inheriting class to generate and return a Roshambo value. It should also include get
and set methods for the name and Roshambo value.

• Create classes named Bart and Lisa that inherit the Player class and implement the
generateRoshambo method. The Bart class should always select rock. The Lisa class
should randomly select rock, paper, or scissors (a 1 in 3 chance of each).

• Create a class named Player1 that inherits the Player class and implements the
generateRoshambo method (even though it isn’t necessary for this player). This
method can return any value you choose.

• Create a class named RoshamboApp that allows the player to play Bart or Lisa as
shown in the console output. Rock should beat scissors, paper should beat rock, and
scissors should beat paper.

• Use the Validator class or a variation of it to validate the user’s entries.

Enhancement
• Keep track of wins and losses and display them at the end of each session.

 Student Workbook for Murach’s Java SE 6 73

Chapter 10
How to work with arrays
Objectives

Applied
• Given a list of values or objects, write code that creates a one-dimensional array that

stores those values or objects.

• Use for loops and enhanced for loops to work with the values or objects in an array.

• Use the methods of the Arrays class to fill an array, compare two arrays, sort an
array, or search an array for a value.

• Implement the Comparable interface in any class you create.

• Create a reference to an array and copy elements from one array to another.

• Given a table of values or objects, write code that creates a two-dimensional array
that stores those values or objects. The array can be either rectangular or jagged.

• Use for loops and enhanced for loops to work with the values or objects in a two-
dimensional array.

• Given the Java code for an application that uses any of the language elements
presented in this chapter, explain what each statement in the application does.

Knowledge
• In general, explain what an array is and how you work with it.

• Describe the operation of the enhanced for loop and explain why it’s especially
useful with arrays.

• Explain when you need to implement the Comparable interface in a class you create.

• Explain what happens when you assign a new array to an existing array variable.

• Describe the difference between a rectangular array and a jagged array, and explain
the difference in how you create them.

Summary
• An array is a special type of object that can store more than one primitive data type

or object. The length (or size) of an array is the number of elements that are stored in
the array. The index is the number that is used to identify any element in the array.

• For loops are often used to process arrays. Java 5.0 also introduced a new type of for
loop, called an enhanced for loop or a foreach loop, that lets you process each
element of an array without using indexes.

• You can use the Arrays class to fill, compare, sort, and search arrays. You can use an
assignment statement to create a second reference to the same array. And you can use
the arraycopy method of the System class to make a copy of an array.

74 Student Workbook for Murach’s Java SE 6

• To provide for sorting a user-defined class, that class must implement the
Comparable interface.

• A one-dimensional array provides for a single list or column of elements so just one
index value is required to identify each element. In contrast, a two-dimensional array,
or an array of arrays, can be used to organize data in a table that has rows and
columns. As a result, two index values are required to identify each element.

• A two-dimensional array can be rectangular, in which case each row has the same
number of columns, or jagged, in which case each row has a different number of
columns.

Terms
array
element
length
size
index
enhanced for loop
foreach loop
reference to an array
one-dimensional array
two-dimensional array
array of arrays
rectangular array
jagged array

 Student Workbook for Murach’s Java SE 6 75

Exercise 10-1 Use a one-dimensional array
In this exercise, you’ll create an Array Test application so you can practice using one-
dimensional arrays.

1. Open the ArrayTestApp class in the c:\java1.6\ch10 directory.

2. Create a one-dimensional array of 99 double values. Then, use a for loop to add a
random number from 0 to 100 to each element in the array. For each value, use the
random method of the Math class to get a double value between 0.0 and 1.0, and
multiply it by 100.

3. Use an enhanced for loop to sum the values in the array. Then, calculate the average
value and print that value on the console followed by a blank line. Compile and test
this class.

4. Use the sort method of the Arrays class to sort the values in the array, and print the
median value (the 50th value) on the console followed by a blank line. Then, test this
enhancement.

5. Print the 9th value of the array on the console and every 9th value after that. Then,
test this enhancement.

Exercise 10-2 Use a rectangular array
This exercise will guide you through the process of adding a rectangular array to the
Future Value application. This array will store the values for up to ten of the calculations
that are performed, and print a summary of those calculations when the program ends that
looks something like this:

Future Value Calculations

Inv/Mo. Rate Years Future Value
$100.00 8.0% 10 $18,416.57
$125.00 8.0% 10 $23,020.71
$150.00 8.0% 10 $27,624.85

Press any key to continue . . .

1. Open the FutureValueApp application stored in the c:\java1.6\ch10 directory.

2. Declare variables at the beginning of the main method for a row counter and a
rectangular array of strings that provides for 10 rows and 4 columns.

3. After the code that calculates, formats, and displays the results for each calculation,
add code that stores the formatted values as strings in the next row of the array (you
need to use the toString method of the Integer class to store the years value).

4. Add code to display the elements in the array at the console when the user indicates
that the program should end. The output should be formatted as shown above. Then,
compile and test the program by making up to 10 future value calculations. When
you’ve got this working right, close the program.

76 Student Workbook for Murach’s Java SE 6

Exercise 10-3 Sort an array of user-defined objects
In this exercise, you’ll modify a Customer class so it implements the Comparable
interface. Then, you’ll sort an array of objects created from this class.

1. Open the Customer and SortedCustomersApp classes stored in the c:\java1.6\ch10
directory.

2. Add code to the Customer class to implement the Comparable interface. The
compareTo method you create should compare the email field of the current customer
with the email field of another customer. To do that, you can’t use the > and <
operators because the email field is a string. Instead, you’ll need to use the
compareToIgnoreCase method of the String class. This method compares the string
it’s executed on with the string that’s passed to it as an argument. If the first string is
less than the second string, this method returns a negative integer. If the first string is
greater than the second string, it returns a positive integer. And if the two strings are
equal, it returns 0.

3. Add code to the SortedCustomersApp class that creates an array of Customer objects
that can hold 3 elements, and create and assign Customer objects to those elements.
Be sure that the email values you assign to the objects aren’t in alphabetical order.
Sort the array.

4. Code a foreach loop that prints the email, firstName, and lastName fields of each
Customer object on a separate line.

5. Compile and test the program. When you’re sure it works correctly, close the
program.

 Student Workbook for Murach’s Java SE 6 77

Exercise 10-4 Work with a deck of cards
In this exercise, you’ll write an application that uses a variety of arrays and for loops to
work with a deck of cards.

1. Open the CardDeckApp class in the c:\java1.6\ch10 directory.

2. Create an array whose elements hold the first initial of the four different suits in a
card deck. Declare an array that can hold a representation of the cards in a deck of
cards without jokers.

3. Write a method to load the card array, one suit at a time. (Use the numbers 11, 12,
and 13 to represent Jacks, Queens, and Kings respectively, and use the number 1 to
represent Aces.) Write another method to print the cards in the array, separating each
card by a space and printing each suit on a separate line. Call these two methods from
the main method. Compile the application and test it to be sure the array is loaded
properly.

4. Write a method that shuffles the deck of cards. To do that, this method should get a
number between 1 and 51 by multiplying the result of the random function by 50,
converting it to an integer, and adding 1. Then, it should switch each card in the deck
with the card that is the given number of cards after it (if there is one). This should be
repeated 100 times to shuffle the deck thoroughly. Call this method from the main
method, followed by the method that prints the cards array. Test the application to be
sure that the cards are shuffled.

5. Declare a rectangular array that represents fours hands of cards with five cards each.
Write a method that loads this array by dealing cards from the cards array. Be sure to
deal one card at a time to each hand. Write a method that prints the hands, separating
the cards in each hand by a space and printing each hand on a separate line. Test the
application to be sure that the cards are dealt properly.

78 Student Workbook for Murach’s Java SE 6

Project 10-1: Calculate a player’s batting statistics

Console
Welcome to the Batting Average Calculator.

Enter number of times at bat: 5

0 = out, 1 = single, 2 = double, 3 = triple, 4 = home run
Result for at-bat 0: 0
Result for at-bat 1: 1
Result for at-bat 2: 0
Result for at-bat 3: 2
Result for at-bat 4: 3

Batting average: 0.600
Slugging percent: 1.200

Another batter? (y/n): y

Enter number of times at bat: 3

0 = out, 1 = single, 2 = double, 3 = triple, 4 = home run
Result for at-bat 0: 0
Result for at-bat 1: 4
Result for at-bat 2: 0

Batting average: 0.333
Slugging percent: 1.333

Another batter? (y/n): n
Press any key to continue . . .

Operation
• This application calculates the batting average and slugging percentage for one or

more baseball or softball players.

• For each player, the application first asks for the number of at bats. Then, for each at
bat, the application asks for the result.

• To enter an at-bat result, the user enters the number of bases earned by the batter. If
the batter was out, the user enters 0. Otherwise, the user enters 1 for a single, 2 for a
double, 3 for a triple, or 4 for a home run.

• After all the at-bat results are entered, the application displays the batting average
and slugging percent.

Specifications
• The batting average is the total number of at bats for which the player earned at least

one base divided by the number of at bats.

• The slugging percentage is the total number of bases earned divided by the number of
at bats.

• Use an array to store the at-bat results for a player.

 Student Workbook for Murach’s Java SE 6 79

• Validate the input so the user can enter only positive integers. For the at-bat results,
the user’s entry must be 0, 1, 2, 3, or 4.

• Validate the user’s response to the question “Another batter?” so the user can enter
only Y, y, N, or n. If the user enters Y or y, calculate the statistics for another batter.
Otherwise, end the program.

• Format the batting average and slugging percent to show three decimal digits.

Enhancements
• At the start of the program, prompt the user for the number of batters to enter. Then,

save the statistics for all of the batters in a two-dimensional array. The program won’t
have to ask the user whether to enter data for another batter, since it will know how
many batters are to be entered. After all batters have been entered, print a one-line
summary for each batter:

Batter 1 average: 0.357 slugging percent: 0.650
Batter 2 average: 0.255 slugging percent: 0.550

• Instead of storing an array of integers, create a class named AtBat and store instances
of this class in the array. This class should define an enumeration named Result with
members OUT, SINGLE, DOUBLE, TRIPLE, and HOMERUN. The class should
have a constructor that accepts a Result parameter and a method named basesEarned
that returns an int representing the number of bases earned for the at bat.

80 Student Workbook for Murach’s Java SE 6

Project 10-2: Display a sorted list of student scores

Console
Welcome to the Student Scores Application.

Enter number of students to enter: 4

Student 1 last name: Steelman
Student 1 first name: Andrea
Student 1 score: 95

Student 2 last name: Murach
Student 2 first name: Joel
Student 2 score: 92

Student 3 last name: Lowe
Student 3 first name: Doug
Student 3 score: 82

Student 4 last name: Murach
Student 4 first name: Mike
Student 4 score: 93

Lowe, Doug: 82
Murach, Joel: 92
Murach, Mike: 93
Steelman, Andrea: 95

Press any key to continue . . .

Operation
• This application accepts the last name, first name, and score for one or more students

and stores the results in an array. Then, it prints the students and their scores in
alphabetical order by last name.

Specifications
• The program should implement a class named Student that stores the last name, first

name, and score for each student. This class should implement the IComparable
interface so the students can be sorted by name. If two students have the same last
name, the first name should be used to determine the final sort order.

• The program should use an array to store the Student objects. Then, it should sort the
array prior to printing the student list.

• Validate the input so the user can enter only a positive integer for the number of
students, the last or first name can’t be an empty string, and the score is an integer
from 0 to 100.

 Student Workbook for Murach’s Java SE 6 81

Project 10-3: Display Quarterly Sales Report

Console
Welcome to the Sales Report Application.

Region Q1 Q2 Q3 Q4
1 $1,540.00 $2,010.00 $2,450.00 $1,845.00
2 $1,130.00 $1,168.00 $1,847.00 $1,491.00
3 $1,580.00 $2,305.00 $2,710.00 $1,284.00
4 $1,105.00 $4,102.00 $2,391.00 $1,576.00

Sales by region:
Region 1: $7,845.00
Region 2: $5,636.00
Region 3: $7,879.00
Region 4: $9,174.00

Sales by quarter:
Q1: $5,355.00
Q2: $9,585.00
Q3: $9,398.00
Q4: $6,196.00

Total annual sales, all regions: $30,534.00

Press any key to continue . . .

Operation
• This application displays a four-section report of sales by quarter for a company with

four sales regions (Region 1, Region 2, Region 3, and Region 4).

• The first section of the report lists the sales by quarter for each region.

• The second section summarizes the total annual sales by region.

• The third section summarizes the total annual sales by quarter for all regions.

• The fourth section prints the total annual sales for all sales regions.

Specifications
• The quarterly sales for each region should be hard coded into the program using the

numbers shown in the console output above. The sales numbers should be stored in a
rectangular array.

• The first section of the report should use nested for loops to display the sales by
quarter for each region. Use tabs to line up the columns for this section of the report.

• The second section of the report should use nested for loops to calculate the sales by
region by adding up the quarterly sales for each region.

• The third section of the report should use nested for loops to calculate the sales by
quarter by adding up the individual region sales for each quarter.

• The fourth section of the report should used nested for loops to calculate the total
annual sales for the entire company.

• Use the NumberFormat class to format the sales numbers using the currency format.

82 Student Workbook for Murach’s Java SE 6

Enhancements
• Instead of hard-coding the data into the main program, have the program obtain the

data from a static method of a separate class. For example, create a class called
SalesData with a method called getRegionSales. This method would accept an int
parameter representing the quarter, and return an array of doubles with quarterly sales
for the specified region. The sales numbers could still be hard coded into this method.

• Alternatively, write the program so it prompts the user to enter the sales data. (The
drawback to this approach is that testing the program will be tedious, as the student
will have to retype all 16 sales numbers every time the program is run.)

 Student Workbook for Murach’s Java SE 6 83

Chapter 11
How to work with collections and
generics
Objectives

Applied
• Given a list of values or objects, write code that creates an array list or linked list to

store the values or objects. Then, write code that uses the values or objects in the list.

• Given a list of key-value pairs, write code that creates a hash map or tree map to store
the entries. Then, write code that uses the entries in the list.

• Given Java code that uses any of the language elements presented in this chapter,
explain what each statement does.

Knowledge
• Describe the similarities and differences between arrays and collections.

• Name the two main types of collections defined by the collection framework and
explain how they differ.

• Describe the generics feature and explain how you use it to create typed collections
and classes.

• Explain what an array list is and, in general, how it works.

• Explain what autoboxing is.

• Explain what a linked list is and, in general, how it works

• Explain how you would decide whether to use an array list or a linked list for a given
application.

• Explain what a queue is and describe the two basic operations that a queue provides.

• Describe the main difference between a hash map and a tree map.

• Explain what the legacy collections are.

• Explain what an untyped collection is and what you must do to work with one.

• Explain when you need to use a wrapper class with untyped collections.

84 Student Workbook for Murach’s Java SE 6

Summary
• A collection is an object that’s designed to store other objects.

• The two most commonly used collection classes are ArrayList and LinkedList. An
array list uses an array internally to store its data. A linked list uses a data structure
with next and previous pointers.

• The generics feature, which became available with Java 5.0, lets you specify the type
of elements a collection can store. This feature also lets you create generic classes
that work with variable data types.

• A map is a collection that contains key-value pairs.

• The two most commonly used map classes are HashMap and TreeMap. The main
difference between these two types of maps is that a tree map maintains its entries in
key sequence and a hash map does not.

• Code that was written before Java 5.0 used untyped collections, which hold elements
of type Object. To retrieve an element from an untyped collection, you typically have
to use casting. To store primitive types in an untyped collection, you have to use
wrapper classes.

Terms
collection
collection framework
set
list
map
key-value pair
generics
wrapper class
typed collection
generic class
type variable

array list
autoboxing
linked list
queue
push operation
pull operation
hash map
tree map
legacy class
vector
untyped collection

 Student Workbook for Murach’s Java SE 6 85

Exercise 11-1 Use an array list
This exercise will guide you through the process of adding a rectangular array to the
Future Value application. This array will store the values for each calculation that is
performed, and print a summary of those calculations when the program ends that looks
something like this:

Future Value Calculations

Inv/Mo. Rate Years Future Value
$100.00 8.0% 10 $18,416.57
$125.00 8.0% 10 $23,020.71
$150.00 8.0% 10 $27,624.85

Press any key to continue . . .

1. Open the FutureValueApp class stored in the c:\java1.6\ch11\FutureValueArrayList
directory.

2. Declare a variable at the beginning of the main method for an array list that stores
strings.

3. After the code that calculates, formats, and displays the results for each calculation,
add code that formats a string with the results of the calculation, then stores the string
in the array list.

4. Add code to display the elements in the array list at the console when the user
indicates that the program should end. Then, test the program by making at least 3
future value calculations.

Exercise 11-2 Use a linked list
In this exercise, you’ll modify the Future Value application you worked on in exercise
11-1 so it uses a linked list rather than an array list. In addition, you’ll modify the code
that displays the calculations so that the calculations are displayed in reverse order from
the order in which they were entered.

1. Open the FutureValueApp class stored in the c:\java1.6\ch11\ FutureValueArrayList
directory and save it to the c:\java1.6\ch11\FutureValueLinkedList directory.

2. Change the variable declaration at the beginning of the main method from an array
list to a linked list. Then, compile and test the application to see that it still works.

3. Modify the code that displays the calculations so it retrieves the elements of the
linked list in reverse order. To do that, you’ll need to use methods of the LinkedList
class.

4. Compile and test the application again to be sure it works.

86 Student Workbook for Murach’s Java SE 6

Exercise 11-3 Create a stack
In this exercise, you’ll create a class called GenericStack that uses a linked list to
implement a stack, which is a collection that lets you access entries on a first-in, last-out
basis. Then, you’ll create another class that uses the GenericStack class. The
GenericStack class should implement these methods:

Method Description
push(element) Adds an element to the top of the stack.
pop() Returns and removes the element at the top of the stack.
peek() Returns but does not remove the element at the top of the stack.
size() Returns the number of entries in the stack.

Create the GenericStack class
1. Start a new class named GenericStack that specifies a type variable that provides for

generics. Then, save it in the c:\java1.6\ch11\GenericStack directory.

2. Declare a linked list that will hold the elements in the stack. Then, use the linked list
to implement the methods shown above.

3. Compile the class.

Create a class that uses the GenericStack class
4. Open the GenericStackApp class in the c:\java1.6\ch11\GenericStack directory.

5. Declare a generic stack at the beginning of the main method that will store String
objects.

6. Add code to the main method that uses the push method to add at least three items to
the stack. After each item is added, display its value at the console (you’ll need to use
a string literal to do this). Then, use the peek method to return the first item and
display that item, and use the size method to return the number of items in the stack
and display that value. Next, use the pop method to return each item, displaying it as
it’s returned. Finally, use the size method to return the number of items again and
display that value.

7. Compile and run the class. If it works correctly, your output should look something
like this:

Push: Apples
Push: Oranges
Push: Bananas
The stack contains 3 items

Peek: Bananas
The stack contains 3 items

Pop: Bananas
Pop: Oranges
Pop: Apples
The stack contains 0 items

 Student Workbook for Murach’s Java SE 6 87

Project 11-1: List movies by category

Console

Welcome to the Movie List Application.

There are 100 movies in the list.

What category are you interested in? scifi
Star Wars
2001: A Space Odyssey
E.T. The extra-terrestrial
A Clockwork Orange
Close Encounters Of The Third Kind

Continue? (y/n): y
What category are you interested in? comedy
Annie Hall
M*A*S*H
Tootsie
Duck Soup

Continue? (y/n): n
Press any key to continue . . .

Operation
• This application stores a list of 100 movies and displays them by category.

• The user can enter any of the following categories to display the films in the list that
match the category:

• animated
 drama
 horror
 scifi

• After each list is displayed, the user is asked whether to continue. If the user enters Y
or y, the program asks for another category. Otherwise, the program ends.

Specifications
• Each movie should be represented by an object of type Movie. The Movie class must

provide two public fields: title and category. Both of these fields should be Strings.
The class should also provide a constructor that accepts a title and category as
parameters and uses the values passed to it to initialize its fields.

• You will be supplied with a class named MovieIO that has a method named
getMovie. This method accepts an int argument that can be a number from 1 to 100.
When called, it returns a unique Movie object for each value passed to it. You should
use this method to fill the array list with 100 Movie objects.

• When the user enters a category, the program should read through all of the movies
in the ArrayList and display a line for any movie whose category matches the
category entered by the user.

88 Student Workbook for Murach’s Java SE 6

Enhancements
• Standardize the category codes by displaying a menu of category choices and asking

the user to select the category by number rather than by entering the category code.

• Instead of an array list, use a tree map to store the movies. Then, display the movies
for the selected category in alphabetical order.

 Student Workbook for Murach’s Java SE 6 89

Project 11-2: Implement a stack calculator

Console
Welcome to the Stack Calculator.

Commands: push n, add, sub, mult, div, clear, or quit.

? push 4
4.0

? push 3
3.0
4.0

? push 2
2.0
3.0
4.0

? mult
6.0
4.0

? add
10.0

? clear
empty

? quit

Thanks for using the Stack Calculator.

Press any key to continue . . .

Operation
• This application implements a stack calculator that does arithmetic with doubles. It

accepts commands in any of the following formats:
push double-value

add

sub

mult

div

clear

quit

90 Student Workbook for Murach’s Java SE 6

Specifications
• The calculator itself should be implemented as a separate class named

StackCalculator. This class should have the following methods:

Method Explanation
void push(double x) Pushes x onto the stack.
double x pop() Pops the top value from the stack.
double add() Pops two values off the stack, adds them, and

pushes the result back onto the stack.
double subtract() Pops two values off the stack, subtracts them,

and pushes the result back onto the stack.
double multiply() Pops two values off the stack, multiplies them,

and pushes the result back onto the stack.
double divide() Pops two values off the stack, divides the first

value into the second one, and pushes the result
back onto the stack.

void clear() Removes all entries from the stack.
double[] getValues() Returns all of the values from the stack in array,

without removing them from the stack.
int size() Gets the number of values in the stack

• The StackCalculator class should use a linked list to maintain the stack data.

• The class that implements the user interface for the stack calculator should use a
series of nested if statements in its main method to interpret the commands entered by
the user.

Hint
• You can use the toArray method of the LinkedList class to implement the getValues

method. Although this method is shown in figure 11-9 in the book, that figure
doesn’t indicate that to use it with a typed collection, you must specify an array of the
correct type as a parameter. See the online documentation for more information. (It’s
also possible to implement this method without using the LinkedList’s toArray
method.)

Enhancements
• Provide alternate forms for the commands that invoke operations. For example, allow

+ for add, - for sub, * for mult, and / for div.

• Add additional commands to the calculator. For example, sqrt could calculate the
square root of the number on top of the stack, and pow could pop the top two values
off the stack, raise the second value to the power indicated by the first value, and
push the result back on the stack.

• Eliminate the need to use the word “push” to push data onto the stack. Instead, the
calculator should treat any command that consists of just a number as a request to
push the number onto the stack.

 Student Workbook for Murach’s Java SE 6 91

Chapter 12
How to work with dates and strings
Objectives

Applied
• Use the GregorianCalendar, Calendar, Date, and DateFormat classes to get the

current date, to set dates, to calculate elapsed days, and to format dates.
• Use the methods of the String class to manipulate and compare strings.
• Use the StringBuilder class to create a mutable string, and use the methods of a

StringBuilder object to work with the string.
• Given Java code that uses any of the language elements presented in this chapter,

explain what each statement does.

Knowledge
• Describe the difference between how dates are stored in GregorianCalendar and Date

objects.

• Describe two situations where you would typically use Date objects rather than
GregorianCalendar objects.

• Explain the difference between a mutable and an immutable string and why it’s
usually more efficient to use a mutable string.

• Explain how Java determines the initial capacity of a StringBuilder object and the
new capacity of a StringBuilder object when its current capacity is exceeded.

Summary
• You can use the GregorianCalendar, Calendar, Date, and DateFormat classes to

create, manipulate, and format dates and times.

• You can use methods of the String class to locate a string within another string,
return parts of a string, and compare all or part of a string. However, String objects
are immutable, so you can’t add, delete, or modify individual characters in a string.

• StringBuilder objects are mutable, so you can use the StringBuilder methods to add,
delete, or modify characters in a StringBuilder object. Whenever necessary, Java
automatically increases the capacity of a StringBuilder object.

Terms
regular expression
immutable string
mutable string

92 Student Workbook for Murach’s Java SE 6

Exercise 12-1 Add a due date to the Invoice application
For this exercise, you’ll modify the Invoice class that’s shown in figure 12-6 so that it
contains methods that return a due date, calculated as 30 days after the invoice date.
Then, you’ll modify the Invoice application that was shown in chapter 11 to display the
invoice date and due date for a batch of invoices.

1. Open the Invoice and InvoiceApp classes in the c:\java 1.6\ch12\Invoice directory.

2. Add two methods named getDueDate and getFormattedDueDate to the Invoice class.
The getDueDate method should calculate and return a Date object that’s 30 days after
the invoice date. The getFormattedDueDate method should return the due date in the
short date format. Compile the class.

3. Modify the displayInvoices method in the InvoiceApp class so that the invoice
display includes columns for the invoice date and the due date in addition to the
invoice number and total. Then, compile this class and run it to make sure it works.

Exercise 12-2 Calculate the user’s age
In this exercise, you’ll write a program that accepts a person’s birth date from the console
and displays the person’s age in years. To make that easier to do, we’ll give you a class
that contains the code for accepting the birth date. The console output for the program
should look something like this:

Welcome to the age calculator.
Enter the month you were born (1 to 12): 5
Enter the day of the month you were born: 16
Enter the year you were born (four digits): 1959
Your birth date is May 16, 1959
Today's date is Sep 27, 2004
Your age is: 45

1. Open the AgeCalculatorApp class in the c:\java 1.6\ch12\AgeCalculator directory.

2. Add code to this class that gets the current date and then uses the current year to
validate the birth year the user enters. The user should not be allowed to enter a year
after the current year or more than 110 years before the current year.

3. Add code to create, format, and print the user’s birth date and to format and print the
current date.

4. Add code to calculate and print the user’s age.

5. Compile the class. Then, run it for a variety of dates to be sure it works.

 Student Workbook for Murach’s Java SE 6 93

Exercise 12-3 Parse a name
In this exercise, you’ll write an application that parses full names into first and last name
or first, middle, and last name, depending on whether the user enters a string consisting of
two or three words. The output for the program should look something like this:

Welcome to the name parser.

Enter a name: Joel Murach

First name: Joel
Last name: Murach

1. Open the NameParserApp class in the c:\java 1.6\ch12\NameParser directory.

2. Add code to the main method that lets the user enter a full name as a string. Then,
add code that separates the name into two or three strings depending on whether the
user entered a name with two words or three. Finally, display each word of the name
on a separate line. If the user enters fewer than two words or more than three words,
display an error message. Also, make sure the application works even if the user
enters one or more spaces before or after the name.

3. Compile the program and run it to make sure it works.

Exercise 12-4 Validate a social security number
In this exercise, you’ll add a method named getSSN to the Validator class that was
presented in chapter 6. Then, you’ll use this method in a program to validate a social
security number entered by the user.

1. Open the SSNValidatorApp and Validator classes in the
c:\java1.6\ch12\SSNValidator directory.

2. Add a method named getSSN to the Validator class that accepts and validates a social
security number. This method should accept a Scanner object and a string that will be
displayed to the user as a prompt. After it accepts the social security number, this
method should validate the entry by checking that the number consists of three
numeric digits, followed by a hyphen and two numeric digits, followed by a hyphen
and four numeric digits. If the user’s entry doesn’t conform to this format, the
method should display an error message and ask the user to enter the number again.
Compile the class.

3. Modify the SSNValidatorApp class so that it uses the getSSN method. Then, compile
and run this class to make sure the validation works correctly.

94 Student Workbook for Murach’s Java SE 6

Project 12-1: Calculate reservation totals

Console

Welcome to the Reservation Calculator.

Enter the arrival month (1-12): 5
Enter the arrival day (1-31): 16
Enter the arrival year: 2005

Enter the departure month (1-12): 5
Enter the departure day (1-31): 18
Enter the departure year: 2005

Arrival Date: Monday, May 16, 2005
Departure Date: Wednesday, May 18, 2005
Price: $115.00 per night
Total price: $230.00 for 2 nights

Another reservation? (y/n): n
Press any key to continue . . .

Operation
• This application calculates the charges for a stay at a hotel based on the arrival and

departure dates.

• The application begins by prompting the user for the month, day, and year of the
arrival and the departure.

• Next, the application displays the arrival date, the departure date, the room rate, the
total price, and the number of nights.

Specifications
• Create a class named Reservation that defines a reservation. This class should contain

instance variables for the arrival date and departure date. It should also contain a
constant initialized to the nightly rate of $115.00.

• The Reservation class should contain a constructor that accepts the arrival and
departure dates as parameters of type Date, as well as methods that return the number
of nights for the stay (calculated by subtracting the arrival date from the departure
date) and the total price (calculated by multiplying the number of nights for the stay
by the nightly room rate). This class should also override the toString method to
return a string like this:
Arrival Date: Monday, May 16, 2005
Departure Date: Wednesday, May 18, 2005
Price: $115.00 per night
Total price: $230.00 for 2 nights

• The main method for the application class should contain a loop that asks the user for
the arrival and departure date information, creates a Reservation object, and displays
the string returned by the toString method.

• Assume valid data is entered.

 Student Workbook for Murach’s Java SE 6 95

Enhancements
• Add validation so the user must enter values that will result in a correct date.

• Allow the user to enter the date in the form mm/dd/yyyy.

• Allow the user to enter the room rate or select the rate from one of several available
rates.

• Use the BigDecimal class rather than the double type for the price calculation.

96 Student Workbook for Murach’s Java SE 6

Project 12-2: Translate English to Pig Latin

Console
Welcome to the Pig Latin Translator.
Enter a line to be translated to Pig Latin:
this program translates from english to pig latin

isthay ogrampray anslatestray omfray englishway otay igpay atinlay

Translate another line? (y/n): n
Press any key to continue . . .

Operation
• The application prompts the user to enter a line of text.

• The application translates the text to Pig Latin and displays it on the console.

• The program asks the user if he or she wants to translate another line.

Specifications
• Parse the string into separate words before translating. You can assume that the

words will be separated by a single space and there won’t be any punctuation.

• Convert each word to lowercase before translating.

• If the word starts with a vowel, just add way to the end of the word.

• If the word starts with a consonant, move all of the consonants that appear before the
first vowel to the end of the word, then add ay to the end of the word.

• If a word starts with the letter y, the y should be treated as a consonant. If the y
appears anywhere else in the word, it should be treated as a vowel.

• Check that the user has entered text before performing the translation.

Enhancements
• Keep the case of the original word whether it’s uppercase (TEST), title case (Test), or

lowercase (test).

• Allow punctuation in the input string.

• Translate words with contractions. For example, can’t should be an’tcay.

• Don’t translate words that contain numbers or symbols. For example, 123 should be
left as 123, and bill@microsoft.com should be left as bill@microsoft.com.

 Student Workbook for Murach’s Java SE 6 97

Project 12-3: Convert numbers to words

Console
Welcome to the Number to Word Converter.

Enter the number you want to convert to words: 3842
three thousand eight hundred forty two

Convert another number? (y/n): y

Enter the number you want to convert to words: 2001
two thousand one

Convert another number? (y/n): y

Enter the number you want to convert to words: 4815
four thousand eight hundred fifteen

Convert another number? (y/n): y

Enter the number you want to convert to words: 400
four hundred

Convert another number? (y/n): n

Press any key to continue . . .

Operation
• The user enters a value from 0 to 9999, and the program converts it to an English

representation of the value as shown in the console output.

• To program continues until the user responds to the “Convert another number”
question with a value other than Y or y.

Specifications
• You are free to use any technique you can devise to split the number entered by the

user into its thousands, hundreds, tens, and ones digits and to create the string
representation of the number.

• You can use arrays of String objects for units, teens, and tens words. For instance, the
teens array may include {“ten”, “eleven”, “twelve”…and so on}. The tens array may
include {“twenty”, “thirty”, “forty”…and so on}.

• If the tens digit is greater than 1, the word will use “twenty”, “thirty”, “forty”, and so
on. Then, the last word be a units digit.

• If the number ends with 00, only the thousands and hundreds places are printed.

• If the number ends with 01 through 09, the last word will be a units digit.

• If the tens digit is 1, the last word will be “ten”, “eleven”, “twelve” and so on.

98 Student Workbook for Murach’s Java SE 6

Hints
• One way to split the user’s input into separate digits is to treat the value as a string

and use the substring method to extract the separate digits. If you use this technique,
be sure to account for values with fewer than four digits.

• Another way to extract the separate digits is to treat the number as an integer and use
a combination of integer division and modulo division. (Remember that integer
division truncates the results.)

• Don’t forget to provide for an entry of zero!

Enhancements
• Validate the input to make sure it isn’t negative or greater than 9,999.

• Allow negative numbers on input.

• Allow double input with up to two decimal digits, and format the string as it would
be written on a check. (For example, “One hundred thirty two dollars and 38 cents.”)

 Student Workbook for Murach’s Java SE 6 99

Chapter 13
How to handle exceptions
Objectives

Applied
• Given a method that throws one or more exceptions, code a method that calls that

method and catches the exceptions.

• Given a method that throws one or more exceptions, code a method that calls that
method and throws the exceptions.

• Code a method that throws an exception.

• Use the methods of the Throwable class to get information about an exception.

• Code a class that defines a new exception, and then use that exception in an
application.

• Use an assert statement in an application to make an assertion about a condition.

• Given Java code that uses any of the language elements presented in this chapter,
explain what each statement does.

Knowledge
• Describe the Throwable hierarchy and the classes that are derived from it.

• Describe the difference between checked and unchecked exceptions and explain
when you need to catch each.

• Explain how Java propagates exceptions and how it uses the stack trace to determine
what exception handler to use when an exception occurs.

• Describe the order in which you code the catch clauses in a try statement.

• Explain what it means to swallow an exception.

• Explain when the code in the finally clause of a try statement is executed and how
that compares to code that follows a try statement.

• Describe three situations where you might want to throw an exception from a
method.

• Describe two situations where you might create a custom exception class.

• Explain what exception chaining is and when you might use it.

• Explain what assertions are and how you can use them in your applications.

100 Student Workbook for Murach’s Java SE 6

Summary
• In Java, an exception is an object that’s created from a class that’s derived from the

Exception class or one of its subclasses. When an exception occurs, a well-coded
program notifies its users of the exception and minimizes any disruptions or data loss
that may result from the exception.

• Exceptions derived from the RuntimeException class and its subclasses are
unchecked exceptions because they aren’t checked by the compiler. All other
exceptions are checked exceptions.

• Any method that calls a method that throws a checked exception must either throw
the exception by coding a throws clause or catch it by coding try/catch/finally blocks
as an exception handler.

• When coding your own methods, if you encounter a potential error that can’t be
handled within that method, you can code a throw statement that throws the
exception to another method. If you can’t find an appropriate exception class in the
Java API, you can code your own exception class.

• You can create custom exception classes to represent exceptions your methods might
throw. This is often useful to hide the details of how a method is implemented.

• When you use custom exceptions, you can use exception chaining to save
information about the cause of an exception.

• An assertion lets you test that a condition is true at a specific point in an application.

Terms
exception handling
exception
unchecked exception
checked exception
throw an exception
catch an exception
exception handler
stack trace
call stack
swallowing an exception
finally block
exception chaining
assertion

 Student Workbook for Murach’s Java SE 6 101

Exercise 13-1 Research Java exceptions
Examine the Java API documentation and make a list of three unchecked exception
classes and three checked exception classes that aren’t listed in figure 13-1. For each
exception, give a brief description of a programming situation in which you might want
to catch the exception.

Exercise 13-2 Throw and catch exceptions
In this exercise, you’ll experiment with various types of exceptions and ways to handle
them.

1. Open the ExceptionTesterApp class in the c:\java1.6\ch13 directory. This class
provides a framework you can use to experiment with exceptions thrown and caught
at different levels of the call stack. It consists of a main method that calls a method
named Method1, which in turn calls a method named Method2, which in turn calls a
method named Method3. Each method displays a message before and after it calls the
next method, and indentation is used to indicate the level in the call stack. Compile
and run this class to get a feel for how it works.

2. Add code to Method3 that throws an unchecked exception by attempting to divide an
integer by zero. Compile and run the program and note where the exception is
thrown.

3. Delete the code you just added to Method3. Then, add a statement to this method like
the one in the first example in figure 13-5 that creates an object from the
RandomAccessFile class. This class throws a checked exception named
FileNotFoundException. Compile the class and note the error message that indicates
that you haven’t handled the exception.

4. Add the code necessary to handle the FileNotFoundException in Method1. To do
that, you’ll need to add throws clauses to the declarations of Method2 and Method3.
You’ll also need to add a try statement to Method1 that catches the exception. The
catch block should display an error message. Run the program to make sure the
exception handler works.

5. Remove the try statement from Method1 and add a throws clause to the declarations
for Method1 and the main method. Then, run the program to see how a checked
exception can propagate all the way out of a program.

102 Student Workbook for Murach’s Java SE 6

Exercise 13-3 Use the finally clause
In this exercise, you’ll experiment with the finally clause to see how it works.

1. Open the FinallyTesterApp class in the c:\java1.6\ch13 directory.

2. Modify the code in Method3 so that it contains a try statement that includes code that
throws an IOException, a catch clause that handles the exception, and a finally
clause. Add a statement to each clause of the try statement that prints information to
the console so you can trace the execution of the program. Run the program to make
sure that the catch clause catches the exception and that the finally clause is executed
as expected.

3. Add an if statement to the try block that throws a NoSuchMethodException if a
condition is true and the IOException if the condition is false. Use any condition you
want, but be sure that it evaluates to true so the IOException won’t be thrown.
Instead of adding a catch clause to catch the new exception, add throws clauses to the
Method1, Method2, and Method3 declarations so that the exception is thrown up to
the main method.

4. Add a try statement to the main method, and call Method1 from within the try clause.
Then, add a catch clause that catches the NoSuchMethodException and displays a
message indicating that the exception has been caught. Run the application to verify
that the code in the finally clause in Method3 is still executed, but the code that
follows the try statement is not.

Exercise 13-4 Create a custom class
In this exercise, you’ll experiment with custom classes and chained exceptions.

1. Create a custom checked exception class named TestException that contains two
constructors: one that accepts no parameters and one that accepts a String message.

2. Open the CustomTesterApp class in the c:\java1.6\ch13 directory.

3. Add a statement to Method3 that throws a TestException without a message. (You’ll
also need to delete or comment out the last statement in Method3 or the compiler will
flag it as unreachable.) Add the code necessary to catch this exception in Method2.
The catch block should simply display a message at the console. Compile and run the
program and observe its operation.

4. Modify your solution so that a custom message is passed to the TestException and is
then displayed in the catch block. Compile and run the program to be sure that the
custom message is displayed.

5. Add another constructor to the TestException class that accepts a Throwable object
as a parameter.

6. Add a try statement to Method3 of the CustomTesterApp class. The try clause should
throw an IOException, and the catch clause should throw a TestException, passing
the IOException to its constructor.

7. Modify the catch block in Method2 that catches the TestException so that it displays
the original cause of the exception. Compile and run the application to make sure it
works.

 Student Workbook for Murach’s Java SE 6 103

Exercise 13-5 Use the assert statement
In this exercise, you’ll add an assert statement to the Invoice application of chapter 4 so
you can see how it works.

1. Open the InvoiceApp class in the c:\java1.6\ch13 directory. Notice that the statement
that calculates the invoice total has been changed so that it adds the discount amount
to the subtotal instead of subtracting it.

2. Add an assert statement that tests that the calculated invoice total is always less than
or equal to the subtotal entered by the user. Include an appropriate message to be
displayed if this assertion is false. Then, compile and run the application to see that
this statement isn’t executed by default.

3. Enable assertions, and then run the program again. This time, an assertion error
should occur and the message you specified should be displayed.

104 Student Workbook for Murach’s Java SE 6

Project 13-1: Check if a file exists

Console

Welcome to the File Checker Application.

Enter a file path and name: c:\autoexec.bat
That file exists.

Check another file? (y/n): y

Enter a file path and name: c:\Murach\ASP.NET\Student workbook.pdf
That file exists.

Check another file? (y/n): y

Enter a file path and name: c:\badfile.dat
That file does not exist.

Check another file? (y/n): n
Press any key to continue . . .

Operation
• The user enters a file path and name, and the program checks to see if the file exists.

If it does, it displays the message “That file exists.” If it doesn’t, it displays the
message “That file does not exist.” The program then asks if the user wants to check
another file.

Specifications
• Create a method named doesFileExist that accepts a String argument for a file path

and name and returns a boolean value to indicate whether or not the file exists.

• Use the FileInputStream class to determine if the file exists. The constructor for this
class accepts a String that contains a file path as a parameter and throws a
FileNotFoundException if the file doesn’t exist. The doesFileExist method should
catch this exception to decide whether it should return true or false.

• The FileInputStream and FileNotFoundException classes are both in the java.io
package.

• The main method should prompt the user for a file path and name, call the
doesFileExist method, and display one of the two messages depending on whether
doesFileExist returns true or false.

 Student Workbook for Murach’s Java SE 6 105

Project 13-2: Display customer information

Console

Welcome to the Customer application

Enter a customer number: 1003

Ronda Chavan
518 Commanche Dr.
Greensboro, NC 27410

Display another customer? (y/n): y

Enter a customer number: 2439

The customer 2439 does not exist.

Display another customer? (y/n): n

Press any key to continue . . .

Operation
• This application displays customer information for customers selected by the user.

The application prompts the user to enter a customer number. If a customer with that
number exists, the application displays the customer’s name and address. If no
customer with that number exists, the application displays the message “The
customer number does not exist.” Either way, the application then asks if the user
wants to display another customer.

Specifications
• Create a class named Customer that stores name, address, city, state, and zipCode as

public fields. The class should have a method named getNameAndAddress that
returns the name and address information formatted as shown in the console output
above.

• To get the information for a customer, use the CustomerIO class that’s provided. This
class contains a method named getCustomer that accepts a customer number (an int
value) and returns a Customer object.

• Modify the getCustomer method so that if it’s called with an invalid customer
number, it throws an exception of type NoSuchCustomerException.

• Create a NoSuchCustomerException class. This class should have a constructor that
accepts an int parameter that provides the customer number that doesn’t exist. This
constructor should pass the message “The customer number does not exist.” To the
constructor of the Exception class.

106 Student Workbook for Murach’s Java SE 6

• The NoSuchCustomerException should store the customer number as a private
instance variable and make it available through a method named
getCustomerNumber. If the user enters an invalid customer number, the main
application class should use the getCustomerNumber method to retrieve the customer
number from the exception object when it displays the error message to the user.

Enhancements
• Provide a constructor for the Customer class that accepts a customer number as a

parameter and then attempts to create a Customer object using the data for that
customer. Then, handle NoSuchCustomerException in the constructor of the
Customer class. The constructor should throw the NoSuchCustomerException if an
invalid customer number is passed to it.

• Same as the first enhancement, but have the constructor throw a different exception
named CouldNotCreateCustomerException if it can’t create the customer. Then, it
should chain the original NoSuchCustomerException in the
CouldNotCreateCustomerException.

• Enhance the getCustomer method so that it also throws IOException. To simulate the
random nature of IOExceptions, have your students code the class so that
IOException is thrown randomly, with a 10% chance of the exception being thrown.

 Student Workbook for Murach’s Java SE 6 107

Chapter 14
How to work with threads
Objectives

Applied
• Use the Thread class or the Runnable interface to create a thread.
• Use the methods of the Thread class to control when the processor executes a thread.
• Use the interrupt method and the InterruptedException class to create a thread that

can be interrupted.
• Use the synchronized keyword to create synchronous threads.
• Use the wait and notifyAll methods of the Object class to coordinate the execution of

two interdependent threads.

Knowledge
• Explain the basic difference between a program that runs in a single thread and a

program that runs under multiple threads.

• Name three common reasons for using threads in a Java application.

• List the three Java API classes or interfaces that have methods related to threading.

• Explain the advantage of creating a thread by extending the Runnable interface rather
than by inheriting the Thread class.

• List the five states of a thread, and describe the status of a thread in each state.

• Explain the difference between the sleep and yield methods.

• Explain why methods that can be executed concurrently by multiple threads need to
be synchronized.

• Describe the producer/consumer pattern used for concurrency control.

Summary
• A thread is a single sequential flow of control within a program that often completes

a specific task.

• A multithreaded application consists of two or mores threads whose execution can
overlap.

• Since a processor can only execute one thread at a time, the thread scheduler
determines which thread to execute.

• Multithreading is typically used to improve the performance of applications with I/O
operations, to improve the responsiveness of GUI operations, and to allow two or
more users to run server-based applications simultaneously.

108 Student Workbook for Murach’s Java SE 6

• You can create a thread by extending the Thread class and then instantiating the new
class. Or, you can implement the Runnable interface and then pass a reference to the
Runnable object to the constructor of the Thread class.

• You can use the methods of the Thread class to start a thread, to control when a
thread runs, and to control when other threads are allowed to run.

• Synchronized methods can be used to ensure that two threads don’t run the same
method of an object simultaneously. When a thread calls a synchronized method, the
object that contains that method is locked so that other threads can’t access it.

Terms
thread
main thread
multithreading
central processing unit (CPU)
servlet
thread scheduler
daemon thread
user thread
asynchronous threads
synchronous threads
concurrency
locking
synchronized method
producer/consumer pattern
producer
consumer

 Student Workbook for Murach’s Java SE 6 109

Exercise 14-1 Create a Number Finder application
In this exercise, you’ll create an application that generates a random number between 0
and 999, and then uses four threads to search for the number. When one of the threads
finds the number, it should print a message on the console. The output from this
application should look like this:

The number is 784
Target number 784 found by Thread-3

1. Open the NumberFinderThreadApp class in the c:\java1.6\ch14 directory. Review its
code to see that it generates a random number between 0 and 999 and then displays it
at the console.

2. Add a class named Finder that extends the Thread class to the
NumberFinderThreadApp file. Then, add a constructor to this class that accepts three
parameters: the number to search for, the number where the search should begin, and
the number where the search should end.

3. Add a run method to the Finder class that searches for the number. This method
should use a for loop to check each value in the specified range to determine if it
matches the target value. If a match is made, the thread should display a message like
the one shown above and terminate. Every ten times through the loop, the thread
should yield to other threads.

4. Add code to the main method to create and start the four threads. The threads should
check the following ranges: thread0, 0-249; thread1, 250-499; thread2, 500-749; and
thread3, 750-999.

5. Compile the program. Then, run it two or more times to be sure it works correctly.

Exercise 14-2 Use the Runnable interface and the
sleep method

In this exercise, you’ll modify your solution to exercise 14-1 so that the Finder class
implements the Runnable interface instead of extending the Thread class and so that it
calls sleep rather than yield every ten times through the loop.

1. Open the NumberFinderThreadApp class you worked on in exercise 14-1. Then,
change the class name to NumberFinderRunnableApp and save the class with this file
name.

2. Modify the Finder class so it uses the Runnable interface. Then, compile the program
and run it to make sure it works correctly.

3. Modify the Finder class so it uses the sleep method to cause the thread to sleep for 1
millisecond every ten times through the loop. Then, compile and test the program
again.

110 Student Workbook for Murach’s Java SE 6

Exercise 14-3 Add a Monitor thread to the Number
Finder application

Because this exercise requires the use of a collection, you need to read chapters 10 and 11
before you do it. In this exercise, you’ll modify your solution to exercise 14-2 so that the
thread that finds the number notifies a Monitor thread, which then interrupts all of the
Finder threads. When a Finder thread is interrupted, it should display a line indicating
that it has been interrupted and then end. The resulting output should look like this:

The number is 20
Target number 20 found by Thread-1
Thread-2 interrupted
Thread-3 interrupted
Thread-4 interrupted

1. Open the NumberFinderRunnableApp class you worked on in exercise 14-2. Then,
change the class name to NumberFinderMonitorApp and save the class with that file
name.

2. Add a class named Monitor to the NumberFinderRunnableApp file. This class should
define a thread by extending the Thread class. This class should include a method
named addThread that adds a thread to a private collection of Thread objects. (You
choose the type of collection.) It should also include a synchronized method named
foundNumber that interrupts each thread in the threads collection. This method
should also set a boolean instance variable to true to indicate that the number has
been found. Then, the run method of this class can simply test this variable within a
never-ending loop.

3. Modify the application’s main method so that it creates and starts the Monitor thread,
passes a reference to the Monitor thread to the Finder threads, and adds the four
Finder threads to the Monitor thread.

4. Modify the Finder class so that its constructor accepts a reference to the Monitor
thread. Then, modify the run method so that it calls the Monitor thread’s
foundNumber method if it finds the target number. Also modify this method so that a
message is displayed when the thread is interrupted. Keep in mind that the thread
may still be searching for the number when it’s interrupted or it may have finished its
search.

5. Compile the application and run it to be sure that it works correctly.

 Student Workbook for Murach’s Java SE 6 111

Project 14-1: Tortoise and the hare race

Console

Get set...Go!
Tortoise : 10
Tortoise : 20
Tortoise : 30
Tortoise : 40
Hare : 100
Tortoise : 50
Tortoise : 60
Tortoise : 70
Tortoise : 80
Hare : 200
Tortoise : 90
Tortoise : 100
.
. (output lines omitted)
.
Hare : 500
Tortoise : 900
Tortoise : 910
Tortoise : 920
Tortoise : 930
Tortoise : 940
Tortoise : 950
Tortoise : 960
Tortoise : 970
Tortoise : 980
Tortoise : 990
Tortoise : 1000
Tortoise: I finished!

The race is over! The Tortoise is the winner.

Hare: You beat me fair and square.

Press any key to continue . . .

Operation
• This application simulates a race between two or more runners. The runners differ in

their speed and how often they need to rest. One of the runners, named “Tortoise,” is
slow but never rests. The other runner, named “Hare,” is ten times as fast but rests
90% of the time.

• There is a random element to the runners’ performance, so the outcome of the race is
different each time the application is run.

• The race is run over a course of 1000 meters. Each time one of the runners moves,
the application displays the runner’s new position on the course. The first runner to
reach 1000 wins the race.

• When one of the runners finishes the race, the application declares that runner to be
the winner and the other runner concedes.

112 Student Workbook for Murach’s Java SE 6

Specifications
• Each runner should be implemented as a separate thread using a class named

ThreadRunner. The ThreadRunner class should include a constructor that accepts
three parameters: a string representing the name of the runner, an int value from 1 to
100 indicating the likelihood that on any given move the runner will rest instead of
run, and an int value that indicates the runners speed—that is, how many meters the
runner travels in each move.

• The run method of the ThreadRunner class should consist of a loop that repeats until
the runner has reached 1000 meters. Each time through the loop, the thread should
decide whether it should run or rest based on a random number and the percentage
passed to the constructor. If this random number indicates that the runner should run,
the class should add the speed value passed to the constructor. The run method
should sleep for 100 milliseconds on each repetition of the loop.

• If the run method is interrupted, it should display a message that concedes the race
and quits.

• The main method of the application’s main class should create two runner threads
and start them. One of the threads should be named “Tortoise.” It runs only 10 meters
each move, but plods along without ever resting. The other thread should be named
“Hare.” It should run 100 meters each move, but should rest 90% of the time.

• This class should also include a method named finished that one of the threads can
call when it finishes the race. That method should declare the thread that calls it to be
the winner and should interrupt the other thread so it can concede the race.

• The finished method should provide for the possibility that the two threads will finish
the race at almost the same time. If that happens, it should ensure that only one of the
threads is declared the winner. (There are no ties!)

Hints
• To determine whether a thread should run or rest, calculate a random number

between 1 and 100. Then, have the thread rest if the number is less than or equal to
the percentage of time that the thread rests. Otherwise, the thread should run.

• The finished method in the main application class will need to know which thread
called it.

Enhancements
• Modify the main application class so that it runs the race 100 times and reports how

many times each runner wins. (To make the application run faster, you may want to
reduce the sleep time in the runner threads.)

• Modify the application so it can support up to 9 runners.
• Add an additional random element to the runner’s performance. For example, have a

“clumsiness percentage” that indicates how often the runner trips and hurts himself.
When the runner trips, he sprains his or her ankle and can run only at half speed for
the next five moves.

• Add the ability for runners to interfere with each other. For example, have an
“orneriness percentage” that indicates how likely the runner is to trip another runner
who is passing him. This will require additional communication among the threads.

 Student Workbook for Murach’s Java SE 6 113

Project 14-2: Create a console animation

Console

Operation
• This program creates an animation effect on the console by writing successive lines

of text. The animation effect is one of two “streamers” that move across the screen,
cross in the middle, and bounce off the edges. Each streamer is represented by five
asterisks.

• For one streamer, the asterisks begin at the left edge of the console. With each line of
output produced for this streamer, the streamer moves one character position to the
right. When the streamer reaches the right edge of the console window, it “bounces”
and moves back to the left. The streamer continues this way indefinitely.

• For the other streamer, the asterisks begin at the right edge of the console and move
to the left one character position at a time until they bounce off the left edge. Then,
they change direction and move to the right.

114 Student Workbook for Murach’s Java SE 6

• It’s difficult to tell while the application is running, but the streamers aren’t displayed
on the same line of console output. Instead, the console lines alternate between the
first streamer and the second streamer.

• The effect of this animation is difficult to describe. To see it in action, you can
download the ThreadProject.jar file for this application by opening your web
browser, entering www.murach.com/dloads/jav5/ThreadProject.jar, and clicking the
Save button in the dialog box that’s displayed. Then, you can run the application by
opening a command window, using the cd command to change to the directory where
you saved the jar file, and typing the following command:
java –jar ThreadProject.jar

To stop the application, press Ctrl+C.

Specifications
• Each streamer should be drawn by a separate thread. The threads should be created

from a class named ThreadAnimator that accepts two parameters: an int that
represents the length of time the thread should sleep after drawing each line, and a
boolean that indicates whether the streamer should start at the left edge of the console
(true) or the right edge (false).

• The threads should run indefinitely. The only way to stop the program is to close the
console window.

Hints
• To prevent the output from the threads from being mixed up, the code that generates

the output will need to be placed in a synchronized method.

• You can vary the sleep time to speed up or slow down the animation. If the animation
isn’t working right, slowing it down may help you find out why.

Enhancements
• Provide a way to terminate the thread by entering a command such as “stop” at the

console.

• Modify the streamers so that they bounce off each other when they meet at the
middle of the console.

• Add additional streamers. You’ll have to modify the code to allow a streamer to start
in the middle of the console rather than at one of the edges.

 Student Workbook for Murach’s Java SE 6 115

Chapter 15
How to get started with Swing
Objectives

Applied
• Use the JFrame class to create and display an empty frame with a specified size and

title, either at a specific position or centered on the screen.
• Set the default close behavior of a frame.
• Use the JPanel class to create a panel that contains labels, text fields, and buttons and

add the panel to a frame.
• Use the ActionListener interface to provide basic event handling for JButton

components.
• Use the Flow Layout and Border Layout managers to control the layout of

components on a panel.
• Given the requirements for a program that uses the Swing features presented in this

chapter, develop a program that satisfies the requirements.

Knowledge
• Explain the difference between a frame and a panel.

• Describe the characteristics of the following types of controls: labels, text fields, and
buttons.

• Describe the difference between AWT and Swing.

• List the classes that are in the inheritance hierarchy for all Swing component classes.

• Explain why it is necessary to set the default close behavior for a frame.

• List the four panes that are present in every frame and identify the pane that contains
components such as text fields, labels, and buttons.

• Describe how button click events are handled in a Swing application.

• Explain the role of layout managers in Swing development, and describe the
difference between the Flow Layout and Border Layout managers.

Summary
• You can use Swing components to create graphical user interfaces that are platform

independent and more bug-free than GUIs developed with the older GUI technology
known as the Abstract Window Toolkit (AWT).

• All Swing classes inherit the Component and Container classes, are stored in the
javax.swing package, and begin with the letter J. Since all Swing components inherit
the Component class, you can call any methods of the Component class from any
Swing component.

116 Student Workbook for Murach’s Java SE 6

• You can use Swing components to create a frame that contains a title bar and a
border. Then, you can add panels, labels, text fields, and buttons to the content pane
of that frame.

• You can use the Toolkit class to get the height and width of a user’s screen in pixels.
Then, you can use this information to center the frames you create on the screen.

• When coding a graphical user interface, you write code that handles events that are
initiated by the user. To do that, you must write code that defines a listener that
listens for each event and responds when an event occurs.

• You can use layout managers, such as the Flow layout manager and the Border
layout manager, to control how components are displayed within a frame or panel.
When using these layout managers, it’s common to nest one panel within another
panel.

Terms
console application
graphical user interface (GUI)
Swing
Swing classes
Swing set
frame
title bar
panel
label
text field
button
component
focus
Metal look and feel

Abstract Window Toolkit (AWT)
heavyweight component
lightweight component
container
pixel
thread
toolkit
pane
content pane
event listener
action event
layout manager
Flow layout manager
Border layout manager

 Student Workbook for Murach’s Java SE 6 117

Exercise 15-1 Create a Swing version of the
Invoice application

In this exercise, you’ll create a Swing version of the Invoice application that was
presented in figure 2-18 of chapter 2. The application should have a user interface that
looks something like this:

1. Open the InvoiceApp.java file in the c:\java1.6\ch15 directory. This file contains a

public InvoiceApp class with an empty main method.

2. Add a class that defines the frame shown above. This frame should be centered on the
screen, it should not be resizable, and closing it should end the application. This
frame should be displayed when the application starts.

3. Add a class that defines a panel with the controls shown above, using a Flow layout
manager to align the controls. Implement the ActionListener interface for this class
so it will respond to the user selecting the Exit or Calculate button. If the user selects
the Exit button, the application should end. If the user selects the Calculate button,
the application should calculate and display the discount percent, discount amount,
and invoice total. (The discount percent should be 20% if the subtotal is greater than
or equal to $200, 10% if the subtotal is less than $200 but greater than or equal to
$100, and 0% if the subtotal is less than $100.) Create an instance of this class and
add it to the frame from the frame class.

4. Add the import statements needed by this application. Then, compile the application
and run it to be sure it works correctly.

118 Student Workbook for Murach’s Java SE 6

Exercise 15-2 Enhance the Invoice application
In this exercise, you’ll enhance the Invoice application that you created for exercise 15-1.

1. Open the InvoiceApp.java file in the c:\java1.6\ch15 directory.

2. Modify the Invoice application so it uses three panels. The main panel should use
Border layout and should serve only as a container for the other two panels. The
labels and text fields should be added to a second panel that uses Flow layout, and
the buttons should be added to a third panel that uses Flow layout. Add the second
panel to the center region of the main panel and add the third panel to the south
region of the main panel.

3. Modify the actionPerformed method so that if the value entered by the user can’t be
converted to a valid number, the application clears all the text fields and doesn’t
perform any calculations. To do that, you need to use a try/catch statement within this
method.

4. Add a third button labeled Clear to the left of the other buttons. If the user selects this
button, the application should clear the contents of all four text fields.

5. Compile the application and test it to be sure these changes work.

 Student Workbook for Murach’s Java SE 6 119

Project 15-1:
Calculate the length of a right triangle’s hypotenuse

Operation
• This application lets the user enter the lengths of the two shortest sides of a right

triangle. When the user click’s Calculate, the program calculates and displays the
length of the third side.

Specifications
• Use the Pythagorean Theorem to calculate the length of the third side. The

Pythagorean Theorem states that the square of the hypotenuse of a right-triangle is
equal to the sum of the squares of the opposite sides:

• Don’t worry about validating the user’s input. If the user enters non-numeric data or
fails to enter data, allow the program to fail.

Hint
• If you have trouble getting the labels and text fields to line up properly, try adjusting

the frame size. When you use the Flow layout manager, the width of the frame affects
how components you add to the frame are lined up.

Enhancements
• Add data validation by catching the exception that’s thrown when the user enters

invalid data.

• Research the Graphics class or the Java2D API and add a drawing that represents the
triangle specified by the user. You may want to scale the triangle’s dimensions to fit
within a pre-defined area of the frame.

a

b

c
c2 = a2 + b2

120 Student Workbook for Murach’s Java SE 6

Project 15-2: Accumulate test scores

Operation
• The user enters test scores one at a time and then clicks the Enter Score button.

• For each entered score, the application adds one to the number of scores, calculates
the average score, and determines what the best score is so far. Then, it displays the
number of scores, average score, and best score in the three disabled text fields.

• The user can click the Clear button to reset everything to zero.

• When the user closes the frame or clicks the Close button, the application exits.

Specifications
• The average score is the sum of all scores divided by the number of scores.

• Assume valid data is entered.

Hint
• If you have trouble getting the labels and text fields to line up properly, try adjusting

the frame size. When you use the Flow layout manager, the width of the frame affects
how components you add to the frame are lined up.

Enhancement
• Add data validation by catching the exception that’s thrown when the user enters

invalid data.

 Student Workbook for Murach’s Java SE 6 121

Chapter 16
How to work with controls and layout
managers
Objectives

Applied
• Create a panel that includes a text area with a scroll bar.
• Create a panel that includes check boxes and radio buttons, and write an event

listener that responds to click events for the controls.
• Create a border that includes both a line style such as etched or beveled and a title.

Then, apply this border to a group of check boxes, radio buttons, or other controls.
• Create a panel that includes a combo box or list populated with data from an array or

collection, and write an event listener that responds when the user selects an item.
• Create an event handler that can process all of the items selected in a list that allows

multiple selections.
• Create a panel that includes a list whose contents can be changed as the program

executes.
• Given a desired layout for a panel, draw a grid that represents the layout. Then, use

the Grid Bag layout manager to build the panel with the correct layout.
• Given the requirements for a program that uses text areas, scroll panes, check boxes,

radio buttons, borders, combo boxes, and lists, write the code to implement the
application.

Knowledge
• List two Swing components that are designed to enhance the appearance or operation

of other controls.

• Describe a situation in which you would use a text area rather than a text field.

• List two ways a program can determine whether a user has selected a check box or
radio button.

• Explain the difference between ActionEvent and ItemEvent for a combo box.

• Explain the difference between a combo box and a list.

• List six layout managers commonly used to build Swing applications, and describe
the approach each takes to arranging controls in a panel.

122 Student Workbook for Murach’s Java SE 6

Summary
• You can create a text area that can store one or more lines of text, and you can use

many of the same techniques to work with text fields and text areas.

• You can create two or more radio buttons that you can add to a button group. Then,
the user can select one of the buttons in the group. You can also create a check box
that lets a user check or uncheck the box.

• A combo box lets a user select an item from a drop-down list of items, and a list lets a
user select one or more items from a list of items.

• You can add a component like a text area or list to a scroll pane, and you can add a
border to any component.

• The Grid Bag layout manager is the most sophisticated and flexible layout manager.
When you use the Grid Bag layout manager, you use the fields of the
GridBagConstraints class to position components in a grid.

Terms
text area
scroll pane
check box
radio button
button group
border
combo box

item event
action event
list
selection mode
multiple interval selection
list model
Grid Bag layout manager

 Student Workbook for Murach’s Java SE 6 123

Exercise 16-1 Modify the Future Value application
For this exercise, you’ll modify the Future Value application presented in chapter 15 so
that it uses a combo box, a list, and the Grid Bag layout manager. When you’re done, the
user interface should look something like this:

1. Open the FutureValueApp class in the c:\java1.6\ch16\FutureValue directory.

2. Modify the panel so that it uses the Grid Bag layout manager rather than the Flow
layout manager. If you want to, you can use the getConstraints method that’s shown
in part 3 of figure 16-15 to help set the grid bag constraints.

3. Replace the Number of Years text field with a combo box that contains the values 1
through 20.

4. Replace the Future Value text field with a list that displays five rows and uses a
vertical scroll bar.

5. Modify the action event listener for the Calculate button so that instead of calculating
a single future value, it calculates the future value for each year up to the year
selected via the combo box and adds a string showing the calculation for each year to
the list.

6. Compile the program, then test it to be sure it works correctly.

124 Student Workbook for Murach’s Java SE 6

Exercise 16-2 Create a Pizza Calculator application
For this exercise, you’ll develop an application that calculates the price of a pizza based
on its size and toppings. The user interface for this application should look something
like this:

1. Decide what layout manager or combination of layout managers you want to use to

implement the user interface, and then sketch the user interface and its rows and
columns.

2. Open the PizzaOrderApp.java file in the c:\java1.6\ch16\PizzaOrder directory. This
file contains a public PizzaOrderApp class with an empty main method.

3. Add the code necessary to implement this application. When the user selects a size
and toppings for the pizza and clicks the Calculate button, the application should
calculate the price of the pizza and display that price in the text field. To calculate the
price of the pizza, add the price of the selected toppings to the base price of the pizza:

Item Price
Small pizza $6.99
Medium pizza $8.99
Large pizza $10.99
Sausage $1.49
Pepperoni $1.49
Salami $1.49
Olives $0.99
Mushrooms $0.99
Anchovies $0.99

4. Compile the program and test it to be sure it works correctly.

 Student Workbook for Murach’s Java SE 6 125

Project 16-1: Enter a team lineup

Console output

Rage 12U (home team)

H. Perkins, Center Field
C. Cousins, Pitcher
J. Johnson, Catcher
B. Lowe, First Base
A. Licouris, Left Field
N. Shrey, Short Stop
S. Palmore, Third Base
C. Giess, Second Base
A. Nieto, Right Field

Operation
• This application lets the user enter the batting lineup for a baseball or softball team.

• The user can enter a team name and use the radio buttons to select whether the team
is the home team or the visiting team.

• For each player, the user enters the player’s name in the text field and selects the
player’s position from the combo box.

• When the user clicks OK, the application displays the team roster on the console as
shown in the console output.

126 Student Workbook for Murach’s Java SE 6

Specifications
• The team positions in the combo boxes should offer the following choices:

• Choose a selection

• Pitcher

• Catcher

• First base

• Second base

• Third base

• Short stop

• Left field

• Center field

• Right field

• Don’t worry about validating the user’s input.

• Use the Grid Bag layout to control the positioning of the labels, text fields, combo
boxes, and buttons.

Enhancements
• Add data validation by requiring that all text fields be entered.

• Validate the combo box selections so that the user can’t select the same position for
two or more players. If the user attempts to set a combo box to a selection that’s
already been assigned to a player, the combo box should immediately revert to
“Choose a position.”

• Replace the text field for each player with a combo box that lists all of the players on
the team. Fill these combo boxes with a team roster consisting of at least 9 names,
and do not allow the user to place the same player in more than one spot in the
lineup. You can either initialize the roster with names coded as constants in the
program, or you can read the names from a text file if you’ve already taught file
handling. (You could also supply the students with a class that has a method that
returns an array list with the names.)

 Student Workbook for Murach’s Java SE 6 127

Project 16-2: Configure a computer purchase

Operation
• The user configures the components of a computer system by selecting items from

the combo boxes, radio buttons, and check boxes.

• When the user clicks the Calculate button, the application calculates the price of the
system by adding the cost of each selected component to a base price.

• When the user closes the frame or presses the Exit button, the application exits.

Specifications
• You are free to use whatever layouts and panels you need to duplicate the layout

shown in the figure. You can also create any classes you think might be helpful to
solve this problem.

• The base price of the computer is $500.
• The user can select one of three processors:

P4 2.2GHz included in base price

P4 2.4GHz add $50.00

P4 2.6GHz add $150

• The user can select one of four memory configurations:
256MB included in base price

512MB add $50.00

1GB add $100.00

2GB add $150.00

128 Student Workbook for Murach’s Java SE 6

• The user can select one of three disk configurations:
80GB included in base price

120GB add $50.00

170GB add $150.00

• The user can select one of two operating systems:
Windows XP Home Edition included in base price

Windows XP Professional add $100.00

• The user can select any or all of the following three software packages:
Office package add $400.00

Accounting package add $200.00

Graphics package add $600.00

Hints
• Consider using a separate class to represent each of the configuration options.

• Don’t forget to calculate the initial price ($500) when the program starts.

Enhancements
• Add a feature that indicates how changing each selection will affect the price. For

example, if Windows XP Professional is currently selected, change the text for the
Windows XP Home Edition label to “Windows XP Home Edition (subtract $100).”
However, if the home edition is currently selected, the check box for the professional
edition should read Windows XP Professional (add $100).”

• Print a summary of the configuration on the console when the user clicks the
Calculate button.

• If you’ve already covered file handling, retrieve the configuration options from a file
rather than having them hard coded in the program.

 Student Workbook for Murach’s Java SE 6 129

Chapter 17
How to handle events and validate data
Objectives

Applied
• Given a class that extends JPanel and includes one or more components that generate

events, modify the class so that it implements the appropriate listener interface to
respond to those events.

• Given a class that extends JPanel and includes one or more components that generate
events, create a separate class to handle those events, and modify the panel class so
that it adds the event class as a listener for each event source.

• Given a class that extends JPanel and includes one or more components that generate
events, add an inner class to handle the events.

• Given a class that extends JPanel and includes one or more components that generate
events, add anonymous inner classes to handle the events.

• Given a class that extends JPanel and includes one or more components that generate
events, add event listeners to handle keyboard and focus events.

• Write statements that display dialog boxes using the JOptionPane class.
• Given a class that extends JPanel and includes one or more text field components,

add data validation to the event listeners for the panel.
• Given the requirements for an application that uses the event handling and data

validation techniques presented in this chapter, write the code to implement the
application.

Knowledge
• Distinguish among an event, an event source, an event object, and an event listener.

• Explain the difference between semantic events and low-level events.

• List four options for structuring the classes that implement the listener interface for
an event.

• List two options for structuring the classes to handle multiple event sources for a
particular event.

• Explain the difference between an inner class and an anonymous inner class.

• Describe at least two situations in which you would want to listen to low-level
events.

• Explain the benefit of using adapter classes rather than implementing listener
interfaces.

130 Student Workbook for Murach’s Java SE 6

Summary
• An event is an object that’s generated by user actions or by system events. An event

listener is an object that implements a listener interface.

• A semantic event is an event that’s related to a specific component like clicking on a
button. In contrast, a low-level event is a less specific event like clicking the mouse.

• To handle an event, you must implement the appropriate listener interface. Then, you
must add an object created from the listener class to the appropriate component by
using the addeventListener method, and you must code the methods of the listener
interface.

• The class that creates the component that generates events can also serve as the
listener for those events. In that case, you specify this in the addeventListener
method.

• You can also use separate classes to listen for events. The benefit of this is that it
separates the code that controls the appearance of the user interface from the code
that manages the application’s behavior.

• Inner classes are often used as event listeners because they can easily access the
fields and methods of the class that contains them.

• Anonymous inner classes are sometimes used as event listeners because they let you
easily create classes that are instantiated only once.

• To make it easier to code the listener interfaces for low-level events, the Java API
includes adapter classes that contain empty methods for all of the methods in the
listener interface.

Terms
event
event source
event object
event listener
register an event listener
semantic event
low-level event

inner class
containing class
anonymous inner class
anonymous class
focus event
keyboard event
adapter class

 Student Workbook for Murach’s Java SE 6 131

Exercise 17-1 Implement an event listener as a
separate class

1. Open the FutureValueApp file in the c:\java1.6\ch17\FutureValue directory, and save
it in the c:\java1.6\ch17\FutureValueSeparateClass directory.

2. Review the code for this application to see that the ActionEvent listener for the
Calculate and Exit buttons are implemented by the FutureValuePanel class.

3. Run the application to refresh your memory on how it works.

4. Modify the application so that the ActionEvent listener for the Calculate and Exit
buttons is implemented in a separate class rather than by the FutureValuePanel class.

5. Compile the application, and test it to be sure it still works correctly.

Exercise 17-2 Implement an event listener as an
inner class

1. Open the FutureValueApp file in the c:\java1.6\ch17\FutureValue directory, and save
it in the c:\java1.6\ch17\FutureValueInnerClass directory.

2. Modify the file so that the ActionEvent listener for the Calculate and Exit buttons is
implemented as an inner class within the FutureValuePanel class.

3. Compile the application, and test it to be sure it works correctly.

Exercise 17-3 Implement separate event listeners
1. Open the FutureValueApp file in the c:\java1.6\ch17\FutureValue directory, and save

it in the c:\java1.6\ch17\FutureValueSeparateListeners directory.

2. Modify the file so that the ActionEvent listeners for the Calculate and Exit buttons
are implemented as separate inner classes within the FutureValuePanel class.

3. Compile the application, and test it to be sure it works correctly.

Exercise 17-4 Implement the event listeners as
anonymous inner classes

1. Open the FutureValueApp file in the c:\java1.6\ch17\FutureValue directory, and save
it in the c:\java1.6\ch17\FutureValueAnonymousClasses directory.

2. Modify the file so that the ActionEvent listeners for the Calculate and Exit buttons
are implemented as anonymous inner classes in the statements that call the
addActionListener method for each button.

3. Compile the application, and test it to be sure it works correctly.

132 Student Workbook for Murach’s Java SE 6

Exercise 17-5 Add low-level events to the
Future Value application

1. Open the FutureValueApp file in the c:\java1.6\ch17\FutureValue directory.

2. Add low-level event listeners to this application so (1) the user is prevented from
entering non-numeric characters into the text fields, and (2) the characters in each
text field are selected automatically when the text field receives the focus.

3. Compile the application, and test it to be sure it works correctly.

Exercise 17-6 Add data validation to the
Future Value application

1. Open the FutureValueApp file in the c:\java1.6\ch17\FutureValue directory.

2. Add data validation to the Future Value application so the user is prevented from
omitting data or entering non-numeric data in the text fields. Use the SwingValidator
class in the c:\java1.6\ch17\FutureValue directory to handle the validation. The user
must enter data into all three of the text fields. In addition, the monthly investment
and interest rate text fields must be valid double values, and the number of years text
field must be an integer.

3. Compile the application, and test it by entering invalid data.

 Student Workbook for Murach’s Java SE 6 133

Project 17-1: Maintain a team roster

Operation
• This application maintains a roster for a sports team. Each player has a last name, a

first name, and a number.

• When the user selects a player from the combo box, the application lists the player’s
name and number in the text fields. The user can then click the Edit or Delete button
to edit or delete the player.

• If the user clicks the Edit button, the text fields are enabled, the Add, Edit, and Delete
buttons are disabled, and the Accept and Cancel buttons are enabled. If the user then
clicks the Accept button, any changes the user made to the player’s data are saved. If
the user clicks Cancel, any changes are discarded.

• If the user clicks the Delete button, the player is immediately removed.

• If the user clicks the Add button, the text fields are cleared and enabled, the Add,
Edit, and Delete buttons are disabled, and the Accept and Cancel buttons are enabled.
The user can then enter data for a new player and click the Accept button to add the
player. If the user clicks the Cancel button, the player is not added.

Specifications
• Create a Player class to represent a player. You can provide any public fields and

methods for this class that you think are appropriate.

• To simplify this project, create a class named TeamIO that simulates the presence of
a file. This class should have a static getTeam method that returns an array list of
players. The array list should be populated with a roster that’s hard coded into the
class, so no actual file I/O is performed. The class should also have a static saveTeam
method that accepts an array list of Player objects and displays the list on the console.
This will help you verify that your program is working.

• When the application starts, it should call the getTeam method to get the team roster.
Then, each time the user adds, changes, or deletes a player, the application should
call the saveTeam method to save the changes.

134 Student Workbook for Murach’s Java SE 6

• Include data validation that requires entries in all three text fields.

• Create a class named AutoSelect that implements the FocusListener interface. Use
the focusGained method of this class to select the text in any of the text fields when it
receives the focus.

• Create a class named IntFilter that implements the KeyListener interface. Use the
keyTyped method of this class to restrict the input for the player number to the
numbers 0 to 9.

Enhancements
• Validate the number field so that no two players can have the same number.

• Implement the TeamIO class so that the data is retrieved from a file and changes are
saved to the file.

• Require the students to use a factory pattern to obtain the I/O class that gets and saves
team data.

 Student Workbook for Murach’s Java SE 6 135

Project 17-2: Validate user entries

Operation
• This application accepts user entries and validates them according to the

specifications below. If the data is valid, a dialog box with the message “Data
accepted” is displayed and the text fields are cleared. If an entry isn’t valid, a dialog
box is displayed with an appropriate error message and the focus is moved to the text
field with the invalid data.

Specifications
• Create a class named Validator that holds a collection of validation requirements for

one or more text fields. The constructors and methods for the Validator class follow:

Constructor Description
Validator(JPanel panel)

Creates a Validator object. The JPanel is used to position any
error messages that might be displayed when data is validated.

Method Description
void addRequiredField(JTextField t, String name)

Adds a required text field.
void addIntegerField(JTextField t, String name)

Adds a text field into which the user must enter a valid integer.
void addDoubleField(JTextField t, String name)

Adds a text field into which the user must enter a valid double
value.

void addIntMinField(JTextField t, int min, String name)
Adds a text field into which the user must enter an integer value
that is greater than or equal to the specified value. The
addInteger method must be called for the text field prior to
calling this method.

void addIntMaxField(JTextField t, int max, String name)
Adds a text field into which the user must enter a value that is
less than or equal to the specified value. The addInteger method
must be called for the text field prior to calling this method.

136 Student Workbook for Murach’s Java SE 6

Method Description
boolean validate()

Performs the validations that have been created by the various
add methods, in the order those methods were called. If any text
field fails validation, a message box is displayed to indicate the
error, focus is moved to the field with the invalid data, and the
validate method returns false. Additional fields are not validated.

• To use the Validator class, you first call the methods that add validation requirements
to the Validator object. The Validator object maintains these requirements in an array
list. Then, you call the validate method to validate the text fields against the
requirements that have been established.

• Create a class with a frame that includes three text fields: name, which is a required
field; age, which must be an integer from 0 to 120; and sales, which must be a valid
double value.

• The frame must also define a button labeled “OK” that performs the validation. If the
data is validated successfully, a dialog box with the message “Data accepted” should
be displayed, and the contents of the five text fields should be cleared.

Hints
• Don’t hesitate to define one or more private classes or interfaces nested within

the Validator class to simplify the solution.
• One benefit of defining the Validator class this way is so that you can place the

code that sets up the validation for each text field along with the code that creates
the fields. Thus, you should place the code that calls the various add methods of
the Validator class near the code that sets up the panel layout, not in the code that
handles the action event. The event handler code should simply call the validate
method to validate the data.

Enhancements
• Add additional validation options, such as min and max for double values or a

range checking validation that combines the min and max functions.
• Modify the Validator class so that instead of displaying error messages in a

dialog box, it displays error messages in labels on the panel. The add methods
will have to be modified so they accept a JLabel parameter, and the validate
method will have to be modified so that instead of displaying a dialog box, it
places the error message in the specified label. In addition, the validate method
should continue validating fields even after it encounters an invalid field.
However, focus should be given to the first field in error.

• Modify the Product Maintenance application that’s presented in the chapter
(figures 17-17 through 17-19) to use the Validator class.

 Student Workbook for Murach’s Java SE 6 137

Chapter 18
How to develop applets
Objectives

Applied
• Given a working Swing application, convert the application to an applet.
• Write a simple HTML page that displays an applet.
• Use the Applet Viewer to test an applet.
• Use the Java Plug-in HTML Converter to convert an HTML page that includes an

APPLET tag to a form that can be run by Internet Explorer or Netscape browsers.
• Run an applet in a browser window by opening an HTML page that includes the

applet.
• Use the jar command to create an archive file that contains an applet, and modify the

HTML file that displays the applet so the applet is run from the jar file.
• Given the specifications for a program that uses the Swing components presented in

this book, implement the program as an applet.

Knowledge
• Explain the difference between a Java applet and an application.

• Describe what happens if a user tries to run an applet without having the appropriate
Java Plug-in installed.

• Describe the operations applets are not allowed to do for security reasons.

• List the four methods defined by the Applet class and explain when each of them is
called.

• Explain how to modify a Swing application so that it runs as an applet.

• List three attributes that are commonly used with the APPLET tag.

• Explain the purpose of the Applet Viewer.

• Explain the purpose of the Java Plug-in HTML Converter.

• Explain the purpose of the Java Console window and describe how to display it with
version 5.0 or later of the JDK.

• Explain the benefits of using jar files to deploy applets.

138 Student Workbook for Murach’s Java SE 6

Summary
• An applet is a special type of application that’s stored on a web server and runs

within a web browser on a client machine.

• To view an applet, the client computer must have the appropriate version of the Java
Runtime Environment (JRE) and the Java Plug-in installed. The Java Plug-in is part
of the JRE.

• Since applets are downloaded from remote servers and run on client machines, they
have stricter security restrictions than applications. To get around these restrictions,
it’s possible to create a signed applet.

• You can use the JApplet class to create an applet that can use Swing components and
all of the current features of Java.

• You can use the Applet Viewer to test an applet outside of its HTML page.

• You can use the Hypertext Markup Language (HTML) to create a web page. Within
the HTML file, you use tags to define the elements of the page. And within some
tags, you define attributes that provide additional information.

• To add an applet to a web page, you include an APPLET tag with CODE, HEIGHT,
and WIDTH attributes.

• Before you deploy an applet, you should run the Java Plug-in HTML Converter to
convert the HTML page so it works with the appropriate browsers and operating
systems.

• To test an applet and its HTML page, you view the HTML page in a web browser.
Then, you can use the Java Console to view the debugging information.

• You can use a Java Archive file (JAR file) to store the files required by an applet in a
compressed format. Then, you can modify the HTML page for the applet so it uses
this JAR file.

Terms
applet
Java Plug-in
signed applet
Hypertext Markup Language (HTML)
HTML tag
attribute
Java Archive (JAR) file

 Student Workbook for Murach’s Java SE 6 139

Exercise 18-1 Develop a Payment applet
In this exercise, you’ll modify the Payment application you saw in chapter 16 so that it
can be run as an applet.

1. Open the PaymentApp class in the c:\java1.6\ch18\Payment directory and review its
code.

2. Open a new file, and cut and paste the code for the PaymentPanel class from the
PaymentApp file to the new file. Give this class public access, add any required
import statements, save the file as PaymentPanel, and compile it.

3. Delete the import statements that aren’t needed from the PaymentApp file, then
compile the file and run the application to see that it still works.

4. Create a class named PaymentApplet that displays the payment panel. When you’re
done, compile the applet class to make sure that it compiles cleanly.

5. Open the payment.html file and review the starting code. This file contains all the
tags needed for the Payment applet except the APPLET tag. Add an APPLET tag that
displays the PaymentApplet at 300 by 300 pixels, and then save the file.

6. Use the Applet Viewer to view and test the applet. When you’re done, click the Exit
button to see that an exception is thrown indicating that the applet doesn’t have the
proper security clearance to access the current thread.

7. Modify the PaymentPanel class so it doesn’t include an Exit button, and compile this
class. Then, run the PaymentApp class and test it. This application won’t display an
Exit button anymore, but you can still close it by clicking the Close button in the
upper right corner.

8. Use the Applet Viewer to run and test the PaymentApplet class. This time, you’ll
have to exit from the applet by closing the browser window. Now, you have an
application (PaymentApp) and an applet (PaymentApplet) that both use the same
panel class.

9. Run the HTML Converter to convert the payment.html page. Then, open the
payment.html page that’s in the Payment directory and review the new code. Also,
open the payment.html page that’s in the Payment_BAK directory to see that it
contains the original code.

10. Use your web browser to test the HTML page and the applet. Since the JRE and Java
Plug-in were automatically installed when you installed the JDK, the applet should
work properly.

11. Modify the actionPerformed method of the PaymentPanel class so that when you
click the Accept button, a message is printed to the console indicating that the
payment was accepted. Then, compile the class and run the applet from the browser
again. This time, display the Java Console and view the statement that’s printed to
the console when you click the Accept button.

140 Student Workbook for Murach’s Java SE 6

Exercise 18-2 Store the Payment applet in a JAR file
In this exercise, you’ll create a JAR file that contains the class files for the Payment
applet that you created for exercise 18-1.

1. Use the JAR tool to create a JAR file named payment.jar that contains only the class
files needed by the Payment applet.

2. Replace the payment.html file that’s in the Payment directory with the payment.html
file that’s in the Payment_BAK directory. Modify the payment.html page so it uses
the JAR file you created in step 1.

3. Use the HTML Converter to convert the HTML page. Then, use your web browser to
display the HTML page to see that it still works with the JAR file.

4. If you have access to a web server, use an FTP program to upload the payment.html
and payment.jar files to the web server. Then, run the Payment applet from the web
server. If you have access to systems that don’t have the current version of Java
installed, test this applet on these systems to see what happens.

 Student Workbook for Murach’s Java SE 6 141

Project 18-1: Simulate a vending machine

Operation
• This project is implemented as an applet that simulates a vending machine that

dispenses soft drinks. The user interface has the following controls:

• Quarter button: Deposits $0.25.

• Dollar button: Deposits $1.00.

• A label that indicates the current credit.

• Refund button: Refunds the customer’s credit.

• Slot buttons 1-6: These buttons display the name of the product currently loaded in
one of the vending machine’s six internal slots. The example above shows that the
vending machine is loaded with Pepsi, Diet Pepsi, Mountain Dew, Dr. Pepper, Root
Beer, and Water.

• When the applet is first started, the six slot buttons are disabled. These buttons are
enabled only when the user has a credit of at least $1.00 (the cost of one item).

142 Student Workbook for Murach’s Java SE 6

• When the user clicks one of the slot buttons, the program displays a dialog box that
tells the user to enjoy the beverage. (The message should indicate the specific
beverage selected. For example, “Enjoy your Diet Pepsi.”)

• If the user clicks Refund, a dialog box should appear that asks the user to take his or
her change. For example, “Please take your change of $1.25.”

Specifications
• You may design any classes you wish to use for this application.

• Each slot in the vending machine can hold up to 10 bottles. The application should
keep track of how many bottles are available in each slot and display a dialog box
with the message “Out of Stock” if the user selects a beverage that’s out of stock.

• Create a web page to display the application.

Hint
• To set the size of a button, use the setPreferredSize method. It accepts a Dimension

object as a parameter.

Enhancements
• Load the beverages from a file.

• Add an indicator (such as an asterisk) to the “slot” buttons that shows when the
beverages are sold out. Alternatively, disable a button when the beverage is sold out.

 Student Workbook for Murach’s Java SE 6 143

Chapter 19
How to work with text and binary files
Objectives

Applied
• Write code that uses the File class to get information about a file or directory.
• Write code that reads and writes data to a text file using buffered readers and writers.
• Use the string handling features that were presented in chapter 12 to process text read

from a delimited text file.
• Write code that reads and writes data to a binary file using primitive data types and

fixed-length strings.
• Write code that reads and writes random-access files.
• Given the specifications for an application that stores its data in a text or binary file,

implement the program using the file handling features presented in this chapter.

Knowledge
• Explain the differences between a text file and a binary file.
• Explain the concept of layering and how it is used to create filtered streams that can

read or write files.
• Explain how a buffer for an output stream works and how it improves the

performance of an I/O operation.
• Name and describe the three common types of I/O exceptions.
• Describe the functions provided by the BufferedWriter, PrintWriter, and FileWriter

classes when writing data to a text file.
• Describe the functions provided by the BufferedReader and FileReader classes when

reading data from a text file.
• Describe the functions provided by the DataOutputStream, BufferedOutputStream,

and FileOutputStream classes when writing data to a binary file.
• Describe the functions provided by the DataInputStream, BufferedInputStream, and

FileInputStream classes when reading data from a binary file.
• List two ways that strings can be stored in a binary file and describe the difference

between the techniques.
• Explain the differences in the use of random-access and sequential-access files.

144 Student Workbook for Murach’s Java SE 6

Summary
• A text file stores data as characters. A binary file stores data in a binary format.

• In a delimited text file, delimiters are used to separate the fields and records of the
file.

• You use character streams to read and write text files and binary streams to read and
write binary files. To get the functionality you need, you can layer two or more
streams.

• A buffer is a block of memory that is used to store the data in a stream before it is
written to or after it is read from an I/O device. When an output buffer is full, its data
is flushed to the I/O device.

• When you work with I/O operations, you’ll need to catch or throw three types of
checked exceptions: IOException, FileNotFoundException, and EOFException.

• To identify a file when you create a File object, you can use an absolute path name or
a relative path name. To identify a file on a remote computer, you can use the
Universal Naming Convention (UNC).

• The File class provides many methods that you can use to check whether a file or
directory exists, to get information about a File object, and to create or delete
directories and files.

• You can use the classes in the Writer and Reader hierarchies to work with a text file.
You can use the classes in the OutputStream and InputStream hierarchies to work
with a binary file. You can also use the methods of the DataOutput and DataInput
interfaces to work with binary files.

• You can use the RandomAccessFile class to access a binary file randomly rather than
sequentially. When you use a random-access file, you can position a pointer to any
location in the file.

• When you work with random-access files, you store string values as fixed-length
strings. That way, the files have the same number of bytes for each field within each
record.

Terms
absolute path name
relative path name
Universal Naming

Convention (UNC)
input file
output file
I/O operations
file I/O
text file
binary file
stream
output stream

input stream
character stream
binary stream
layer two or more

streams
buffered stream
buffer
flush the buffer
autoflush feature
delimited text file
delimiter
field

column
record
row
Universal Text Format

(UTF)
sequential-access file
sequential file
random-access file
pointer
cursor
metadata
fixed-length string

 Student Workbook for Murach’s Java SE 6 145

Exercise 19-1 Work with a text file
In this exercise, you’ll create an application that maintains the name of the class that’s
used to create the ProductDAO object for the Product Maintenance application of chapter
8 in a text file. Then, you’ll modify the Product Maintenance application so it uses the
object specified in the text file.

Create the DAO Maintenance application
1. Open the DAOFile and DAOMaintApp classes in the

c:\java1.6\ch19\ProductMaintenance directory.

2. Add code to the DAOFile class so that it can read and write a string that contains the
name of a ProductDAO class to a text file named dao.txt. To do that, you’ll need to
add code to the constructor to initialize the File object, and you’ll need to add code to
the getDAOName and setDAOName methods so they read and write to the file.

3. Display the DAOMaintApp class, and add the code needed to create a DAOFile
object and to get and set the name of the ProductDAO object in the file that the
DAOFile object refers to. Test this application by changing the name of the
ProductDAO class to ProductTextFile. The output should look like this:

Welcome to the DAO Maintenance application

The current ProductDAO class is: ProductRandomFile

Do you want to change this? (y/n): y

Enter the name of a valid ProductDAO class: ProductTextFile

The current ProductDAO class is: ProductTextFile

Do you want to change this? (y/n): n

4. To be sure that the dao.txt file was changed correctly, open it in a text editor.

Modify the Product Maintenance application
5. Open the DAOFactory class and modify it so it uses the DAOFile class to read the

string in the dao.txt file and return the appropriate DAOFactory object. It should
provide for ProductTextFile and ProductRandomFile objects.

6. Open the ProductMaintApp class and test it to make sure it works correctly. If the
name of the class in the dao.txt file is anything other than ProductTextFile or
ProductRandomFile, this class will throw an exception.

7. Modify the ProductMaintApp class so it prevents the exception that’s thrown if an
invalid ProductDAO class is specified.

146 Student Workbook for Murach’s Java SE 6

Exercise 19-2 Work with a binary file
In this exercise, you’ll enhance the Product Maintenance application so it can use a
binary file.

1. Open the ProductTextFile class in the c:\java1.6\ ProductMaintenance directory.
Change the class name to ProductBinaryFile, and save the class with this name.

2. Modify this class so it uses a binary file named products.dat. Be sure to store the
product code and description as UTF characters.

3. Modify the DAOFactory class so it provides for the ProductBinaryFile class.

4. Run the DAOMaintApp application to change the ProductDAO class to
ProductBinaryFile. Then, run the ProductMaintApp application to see if it works
with the binary file. Make sure to leave at least three product records in the binary
file.

5. Use a text editor to open the products.dat file. Note that it’s easier to read the data
that’s stored in the text file.

Exercise 19-3 Improve the exception handling
In this exercise, you’ll improve the way that exceptions are handled by the
ProductMaintApp and ProductTextFile classes.

1. Open the ProductMaintApp class and modify it so it displays an error message and
exits the application if the getProducts method returns a null.

2. Open the ProductTextFile class and comment out the line in the catch clause of the
getProducts method that prints the stack trace to the console. Then, add a statement
like this that throws an IOException to the beginning of the getProducts method:

if (true)
 throw new IOException(

 "This is a test of the getProducts method.");

3. Test these changes to make sure they’re working correctly. To do that, run the
DAOMaintApp application to set the name of the ProductDAO class to
ProductTextFile. Then, run the ProductMaintApp application and enter the list
command. If this works, comment out the statement you added that throws the
IOException.

4. Modify the ProductMaintApp class so it responds appropriately if the addProduct or
deleteProduct method returns a false value. Test this exception by commenting out
the line in the catch clause of the saveProducts method that displays the stack trace
and adding a statement near the beginning of this method that throws an
IOException. Test these changes.

5. Modify the ProductTextFile class so it writes exceptions to a text file named
errorLog.txt instead of printing them to the console. To do that, add a method named
printToLogFile that accepts an IOException as an argument. This method should
append two records to the log file: one that indicates the date and time the exception
occurred and one that contains information about the exception.

 Student Workbook for Murach’s Java SE 6 147

6. Modify the getProducts and saveProducts methods so they call the printToLogFile
method when an error occurs. Test these changes. When you’re sure this works
correctly, comment out the statement you added that throws the IOException and
compile the class again.

Exercise 19-4 Enhance the random-access
processing

In this exercise, you’ll modify the ProductRandomFile class so it works more efficiently.

1. Use the DAOMaintApp application to specify the ProductRandomFile class as the
ProductDAO class.

2. Open the ProductRandomFile class in the c:\java1.6\ch19\ProductMaintenance
directory and review its code. Note that the getProducts method does not use a
buffered input stream.

3. Modify the getProducts method so it uses a buffered DataInputStream to read each
product in the products.ran file sequentially, creates a Product object for each product
that isn’t marked for deletion, and adds the Product object to the products array list.
Be sure to check that the file exists before you process it.

4. Test this change by running the ProductMaintApp application.

Exercise 19-5 Update the random-access file
In this exercise, you’ll add a method to the RandomAccessFile class that can be used to
permanently delete the records in the products.ran file that have been marked for
deletion. Then, you’ll write the code to call this method.

1. Open the ProductRandomFile and RandomMaintApp classes in the
c:\java1.6\ch19\ProductMaintenance directory.

2. Add a method named commitDeletions to the ProductRandomFile class. This method
should delete all the records from the products.ran file that are marked for deletion
and return the number of records that were deleted. (If an IOException occurs, it
should return –1.) To do that, you can write all the products in the products array list
to the file, and you can use the setLength method to set the file to the appropriate
length. To make this code work, you’ll need to close the RandomAccessFile object so
that the new file length is applied. Also, be sure to reopen the file for random access,
and reinitialize the productCodes array so it contains only the current products.

3. Display the RandomMaintApp class and note that it’s similar to the
ProductMaintApp class but contains only commit, help, and exit commands. Add the
code to this class to implement the commitDeletions method that’s executed when the
user enters the commit command. If the commit operation is successful, it should
display the number of records that were deleted. Otherwise, it should display an
appropriate error message. Test this class to be sure it works correctly. To do that,
you’ll need to use the ProductMaintApp application to delete one or more records
before you run the RandomMaintApp application.

148 Student Workbook for Murach’s Java SE 6

Project 19-1: Maintain a list of countries

Console
Welcome to the Countries Maintenance application

1 - List countries
2 - Add a country
3 - Exit

Enter menu number: 1

India
Japan
Mexico
Spain
United States

1 - List countries
2 - Add a country
3 - Exit

Enter menu number: 2

Enter country: Thailand

This country has been saved.

1 - List countries
2 - Add a country
3 - Exit

Enter menu number: 1

India
Japan
Mexico
Spain
United States
Thailand

1 - List countries
2 - Add a country
3 - Exit

Enter menu number: 3

Goodbye.

Press any key to continue . . .

 Student Workbook for Murach’s Java SE 6 149

Operation
• The application begins by displaying a menu with three choices.

• If the user chooses the first menu item, the application displays a list of countries that
are saved in a file.

• If the user chooses the second menu item, the application prompts the user to enter a
country and then it writes that country to the file of countries.

• If the user chooses the third menu item, the application displays a goodbye message
and exits.

Specifications
• Create a class named CountriesTextFile that contains one method that allows you to

read a list of countries from a file and another method that allows you to write a list
of countries to a file. For example:
public ArrayList<String> getCountries()

public boolean saveCountries(ArrayList<String> countries)

• Store the list of countries in a text file named countries.txt in the same directory as
the CountriesTextFile class. If the countries.txt file doesn’t exist, the
CountriesTextFile class should create it. This class should use buffered I/O streams,
and it should close all I/O streams when they’re no longer needed.

• Create a class named CountriesApp that displays the menu and responds to the user’s
choices.

• Use the Validator class presented in chapter 6 or an enhanced version of it to validate
the user’s entries. A valid integer is required for the menu choice, and a non-empty
string is required for the country.

Enhancements
• Create another class named CountriesBinaryFile that can store the list of countries in

a binary data file named countries.dat. This class should contain a main method that
initializes the file for the first time by writing several countries to it. Then, modify the
CountriesApp class so it uses the CountriesBinaryFile class instead of the
CountriesTextFile class.

• Modify the CountriesApp class so it includes a menu choice that allows the user to
delete a country from the file.

150 Student Workbook for Murach’s Java SE 6

Project 19-2: Maintain a conversions table
Console

Welcome to the Length Converter

1 - Convert a length
2 - Add a type of conversion
3 - Delete a type of conversion
4 - Exit

Enter menu number: 1

1 - Miles to Kilometers: 1.6093
2 - Kilometers to Miles: 0.6214
3 - Inches to Centimeters: 2.54

Enter conversion number: 2

Enter Kilometers: 10
10.0 Kilometers = 6.214 Miles

1 - Convert a length
2 - Add a type of conversion
3 - Delete a type of conversion
4 - Exit

Enter menu number: 2

Enter 'From' unit: Centimeters
Enter 'To' unit: Inches
Enter the conversion ratio: .3937

This entry has been saved.

1 - Convert a length
2 - Add a type of conversion
3 - Delete a type of conversion
4 - Exit

Enter menu number: 1

1 - Miles to Kilometers: 1.6093
2 - Kilometers to Miles: 0.6214
3 - Inches to Centimeters: 2.54
4 - Centimeters to Inches: 0.3937

Enter conversion number: 4

Enter Centimeters: 2.54
2.54 Centimeters = 1 Inches

1 - Convert a length
2 - Add a type of conversion
3 - Delete a type of conversion
4 - Exit

Enter menu number: 4

Goodbye.

Press any key to continue . . .

 Student Workbook for Murach’s Java SE 6 151

Operation
• This application begins by displaying a main menu with four items: (1) Convert a

length, (2) Add a type of conversion, (3) Delete a type of conversion, and (4) Exit.

• If the user chooses the first main menu item, the application displays a menu of
possible conversions. After the user selects a conversion, the application prompts the
user to enter a unit of measurement, calculates the conversion, displays the result, and
displays the main menu again.

• If the user chooses the second main menu item, the application prompts the user to
enter the values for a new conversion, saves this new conversion to a file, and
displays a message to the user.

• If the user chooses the third main menu item, the application displays a menu of
possible conversions. After the user selects the conversion, the application deletes
that conversion from the file, displays a message to the user, and displays the main
menu again.

• If the user chooses the fourth main menu item, the application displays a goodbye
message and exits.

Specifications
• Create a class named Conversion that can store information about a conversion,

including fromUnit, fromValue, toUnit, toValue, and conversionRatio. This class
should also contain the methods that perform the conversion calculations and return
the results as a formatted string.

• Create a class named ConversionsTextFile that contains one method that reads an
array list of Conversion objects from a file and another that writes an array list of
Conversion objects to a file. For example:
public ArrayList<Conversion> getConversions()

public boolean saveConversions(ArrayList<Conversion> typesList)

• Store the list of conversions in a text file named conversion_types.txt in the same
directory as the ConversionsTextFile class. If the conversion_types.txt file doesn’t
exist, the ConversionsTextFile class should create it. This class should use buffered
I/O streams, and it should close all I/O streams when they’re no longer needed.

• Create a class named ConversionsApp that displays the menus shown in the console
output and responds to the user’s choices.

• Use the Validator class or a variation of it to validate the user’s entries. A valid
integer is required for a menu choice, non-empty strings are required for the “From”
and “To” fields, and a valid double is required for the conversion ration.

152 Student Workbook for Murach’s Java SE 6

Project 19-3: Maintain customer data (text or binary file)

Console
Welcome to the Customer Maintenance application

COMMAND MENU
list - List all customers
add - Add a customer
del - Delete a customer
help - Show this menu
exit - Exit this application

Enter a command: list

CUSTOMER LIST
frank46@hotmail.com Frank Jones
sarah_smith@yahoo.com Sarah Smith

Enter a command: add

Enter customer email address: test@gmail.com
Enter first name: text
Enter last name: test

text test was added to the database.

Enter a command: list

CUSTOMER LIST
frank46@hotmail.com Frank Jones
sarah_smith@yahoo.com Sarah Smith
test@gmail.com text test

Enter a command: del

Enter customer email to delete: test@gmail.com

text test was deleted from the database.

Enter a command: list

CUSTOMER LIST
frank46@hotmail.com Frank Jones
sarah_smith@yahoo.com Sarah Smith

Enter a command: exit

Bye.

Press any key to continue . . .

 Student Workbook for Murach’s Java SE 6 153

Operation
• This application begins by displaying a menu with five choices: list, add, del, help,

and exit.

• If the user enters “list”, the application displays the customer data that’s stored in a
text file.

• If the user enters “add”, the application prompts the user to enter data for a customer
and saves that data to the text file.

• If the user enters “del”, the application prompts the user for an email address and
deletes the corresponding customer from the text file.

• If the user enters “help”, the application displays the menu again.

• If the user enters “exit”, the application displays a goodbye message and exits.

Specifications
• Create a class named Customer that stores data for the user’s email address, first

name, and last name.

• Create interfaces named CustomerReader and CustomerWriter that define the
methods that will be used to read and write customer data to a customer file. In
addition, create an interface named CustomerConstants that contains three constants
that specify the display size of a customer’s email address (30), first name (15), and
last name (15). Then, create an interface named CustomerDAO that inherits all three
of these interfaces.

• Create a class named CustomerTextFile that implements the methods specified by the
CustomerDAO interface. Store the customer data in a text file named“customers.txt
in the same directory as this class. If the customers.txt file doesn’t exist, this class
should create it. This class should use buffered I/O streams, and it should close all
I/O streams when they’re no longer needed.

• Create a class named DAOFactory that contains a method named getCustomerDAO.
This method should return an instance of the CustomerTextFile class.

• Create a CustomerMaintApp class that displays the prompts shown in the console
output and accepts the user entries. This class should use the DAOFactory class to get
a CustomerDAO object. Then, it should use the methods of the CustomerDAO object
to read customer data from the file and to write customer data to the file.

• Use the Validator class or a variation of it to validate the user’s entries. Non-empty
strings are required for the email address, first name, and last name.

• Use spaces to align the customer data in columns on the console. To do that, you can
create a utility class named StringUtils with a method that adds the necessary spaces
to a string to reach a specified length.

154 Student Workbook for Murach’s Java SE 6

Enhancements
• Modify the application so it uses a class named CustomerBinaryFile to store the data

in a binary file named customer.dat.

• Modify the application so it uses a class named CustomerRandomFile to store the
data in a random-access file named customer.ran. This class should use the seek
method to randomly access each customer record whenever that’s necessary.

• Add an “update” command that lets the user update an existing customer. This
command should prompt the user to enter the email address. Then, it should let the
user update the first name or last name for the customer.

• Add a method to the Validator class that uses string parsing techniques to validate the
email address. At the least, you can check to make sure that this string contains some
text, followed by an @ sign, followed by some more text, followed by a period,
followed by some more text. For example, “x@x.x” would be valid while “xxx” or
“x@x” would not.

• EXTRA CREDIT: Create a GUI for this application instead of the console. Use the
Product Maintenance program presented in chapter 17 as a model.

 Student Workbook for Murach’s Java SE 6 155

Chapter 20
How work with XML
Objectives

Applied
• Given a listing of an XML document, identify the elements and content it contains.
• Use a web browser or XML editor to view or edit XML files.
• Use the classes of the StAX API to read and write the data that’s stored in an XML

file.

Knowledge
• Describe the major differences between XML and HTML.
• Explain how elements are structured in an XML document.
• Explain the difference between a child element and an attribute, and describe the

relative advantages of each.
• Describe the use of a DTD.
• Explain why using StAX is generally preferable to using either SAX or DOM.

Summary
• XML provides a standard way to structure data by using tags that identify data items.

• An element begins with a start tag and ends with an end tag. An element can contain
data in the form of content that appears between the tags. It can also contain child
elements.

• An attribute consists of a name and value that appear within an element’s start tag.

• A DTD (Documentation Type Definition) is a schema that defines the structure of an
XML document. This schema can be enforced when a document is read or written.

• You can use a web browser to view XML data, and you can use any text editor to
edit an XML file, but it’s helpful to use a text editor that’s designed for working with
XML.

• DOM (the Document Object Model) is an API that can be used to build a DOM tree,
work with the nodes of a tree, read an XML document from a file, and write an XML
document to a file.

• SAX (the Simple API for XML) can be used to read an XML document.

• StAX (the Streaming API for XML) is appropriate for reading or writing XML
documents of all sizes.

156 Student Workbook for Murach’s Java SE 6

Terms
Extensible Markup Language (XML)
XML document
tag
XML declaration
element
start tag
end tag
content
child element
parent element
root element
attribute
schema
schema language
Document Type Definition (DTD)
Simple API for XML (SAX)
Document Object Model (DOM)
Streaming API for XML (StAX)

 Student Workbook for Murach’s Java SE 6 157

Exercise 20-1 Work with an XML file
In this exercise, you’ll write code that works with an XML document that’s stored in a
file. When you complete this exercise, the console output should look like this:

Products list:
java Murach's Beginning Java $49.50
jsps Murach's Java Servlets and JSP $49.50

XML Tester has been added to the XML document.

Products list:
java Murach's Beginning Java $49.50
jsps Murach's Java Servlets and JSP $49.50
test XML Tester $77.77

XML Tester has been deleted from the XML document.

Products list:
java Murach's Beginning Java $49.50
jsps Murach's Java Servlets and JSP $49.50

1. Use a web browser to view the products.xml file in the ch20\XMLTester directory.
Then, collapse and expand some of the elements. If you can’t do that, you may need
to allow blocked content. With the Internet Explorer, for example, you can click on
the information bar and select Allow Blocked Content from the shortcut menu. When
you’re through experimenting, close the browser, which will reset your content
blocker.

2. Open the XMLTesterApp class that’s stored in the ch20\XMLTester directory. Run
this application to see how it works. At this point, it prints three messages to the
console, but it doesn’t work with the XML file.

3. Add code to the readProducts method that reads an XML document from the
products.xml file and stores it in an array list. Be sure to catch any exceptions that
may be thrown. Compile this class to make sure it doesn’t contain any compile-time
errors. Then, run the class. At this point, the application should print three identical
product lists, and those lists should match the data that’s stored in the products.xml
file.

4. Add code to the writeProducts method that writes the XML document to the
products.xml file. Then, remove the comments from the code in the main method that
adds and removes a product from the list. Finally, compile and test the application
again. When you do, it should display the products list, write the “XML Tester”
product to the products.xml file, display the products list again, remove the “XML
Tester” product from the file, and display the products list a third time.

158 Student Workbook for Murach’s Java SE 6

Exercise 20-2 Use an XML file with the Product
Maintenance application

In this exercise, you’ll modify the Product Maintenance application of chapter 8 so it uses
an XML file for getting and saving the product records.

1. Open the DAOFactory class that’s stored in the ch20\ProductMaintenance directory.
Here, the getProductDAO method has already been changed so this application will
use the methods in the ProductXMLFile class to work with the XML file.

2. Open the ProductXMLFile class that’s in this directory. This is the code that’s shown
in figure 20-11, but the getProducts and saveProducts methods aren’t complete. If
you look at the constructor for this class, you can see that it creates a File object that
represents the file named products.xml. If you’re interested, you can use your web
browser to review the data in this file.

3. Open the ProductMaintApp class that’s in this directory. Its code is the same as it
was in chapter 8. Then, run this class to remind yourself how it works. Just enter the
exit command when prompted, though, because the other commands won’t work
until you complete two of the methods in the ProductsXMLFile class.

4. Complete the getProducts method in the ProductsXMLFile class so it returns the
Product objects that are stored in the XML file. If you’ve done exercise 20-1, you can
do that by copying some of the code from that application’s readProducts method.
Then, test the getProducts method to make sure it works correctly by using the list
command of the Product Maintenance application.

5. Complete the saveProducts method so it writes the Product objects that are passed to
it to the XML file. If you’ve done exercise 20-1, you can do that by copying some of
the code from that application’s writeProducts method. Then, test the saveProducts
method to make sure it works correctly by using the add and delete commands of the
Product Maintenance application.

6. To verify that the data is being saved correctly, you can view the XML file in a web
browser.

 Student Workbook for Murach’s Java SE 6 159

Project 20-1: List artists and albums

Console
Artist and Album Listing

Artists

The Beatles
Elvis Presley
John Prine

Albums

Rubber Soul
Revolver
Sgt. Pepper's Lonely Hearts Club Band
The White Album
Elvis at Sun
Elv1s 30 #1 Hits
John Prine
Sweet Revenge

Artists and Albums

The Beatles
 Rubber Soul
 Revolver
 Sgt. Pepper's Lonely Hearts Club Band
 The White Album
Elvis Presley
 Elvis at Sun
 Elv1s 30 #1 Hits
John Prine
 John Prine
 Sweet Revenge

Press any key to continue . . .

Operation
• This application reads an XML file and displays a list of artists, albums, and albums

by artist.

Specifications
• Create a class named MusicArtistsApp that reads an XML file named

music_artists.xml and displays a list like that shown in the console output above.

• The music_artists.xml is provided for you and contains the data shown above.

160 Student Workbook for Murach’s Java SE 6

Project 20-2: Maintain customer data (XML file)

Console
Welcome to the Customer Maintenance application

COMMAND MENU
list - List all customers
add - Add a customer
del - Delete a customer
help - Show this menu
exit - Exit this application

Enter a command: list

CUSTOMER LIST
frank46@hotmail.com Frank Jones
sarah_smith@yahoo.com Sarah Smith

Enter a command: add

Enter customer email address: xml_test@gmail.com
Enter first name: XML
Enter last name: Test

XML Test was added to the database.

Enter a command: list

CUSTOMER LIST
frank44@hotmail.com Frank Jones
sarah_smith@yahoo.com Sarah Smith
xml_test@gmail.com XML Test

Enter a command: del

Enter customer email to delete: xml_test@gmail.com

XML Test was deleted from the database.

Enter a command: list

CUSTOMER LIST
frank44@hotmail.com Frank Jones
sarah_smith@yahoo.com Sarah Smith

Enter a command: exit

Bye.

Press any key to continue . . .

 Student Workbook for Murach’s Java SE 6 161

Operation
• This application begins by displaying a menu with five choices: list, add, del, help,

and exit.

• If the user enters “list”, the application displays the customer data that’s stored in an
XML file.

• If the user enters “add”, the application prompts the user to enter data for a customer
and saves that data to the XML file.

• If the user enters “del”, the application prompts the user for an email address and
deletes the corresponding customer from the XML file.

• If the user enters “help”, the application displays the menu again.

• If the user enters “exit”, the application displays a goodbye message and exits.

Specifications
• Create a class named Customer that stores data for the user’s email address, first

name, and last name.

• Use a text editor to create an XML file named customers.xml in the same directory as
the Customer class. This file should contain valid XML tags for at least one
customer. For example:
<?xml version="1.0" encoding="UTF-8"?>
<Customers>
 <Customer Email="frank44@hotmail.com">
 <FirstName>Frank</FirstName>
 <LastName>Jones</LastName>
 </Customer>
</Customers>

• Create a class named CustomerXMLFile that reads the customers.xml file when it’s
instantiated. This class should include a public method that return an array list of
Customer objects created from the data in the file, a public method that returns a
Customer object for a specified email address, and public methods for adding and
deleting records. Include any additional private methods that you need to perform
these functions.

• Create a CustomerMaintApp class that works as shown in the console output. This
class should use the Customer and CustomerXMLFile classes to work with Customer
data.

• Use spaces to align the customer data in columns on the console. To do that, you can
create a utility class named StringUtils that has a method that adds the necessary
spaces to a string to reach a specified length.

• Use the Validator class or a variation of it to validate the user’s entries. Non-empty
strings are required for the email address, first name, and last name.

162 Student Workbook for Murach’s Java SE 6

Enhancements
• Add an “update” command that lets the user update an existing customer. This

command should prompt the user to enter the email address for a customer. Then, it
should let the user update the first name and last name for the customer.

• Add a method to the Validator class that uses string parsing techniques to validate the
email address. At the least, you can check to make sure that this string contains some
text, followed by an @ sign, followed by some more text, followed by a period,
followed by some more text. For example, “x@x.x” would be valid while “xxx” or
“x@x” would not.

• Use an interface to eliminate any direct calls to the CustomerXMLFile class from the
CustomerMaintApp class. To do that, you can use CustomerReader, CustomerWriter,
CustomerConstants, and CustomerDAO interfaces as well as a DAOFactory class as
described in project 19-3. Then, you can modify the CustomerXMLFile and
CustomerMaintApp classes so they use these interfaces and class.

 Student Workbook for Murach’s Java SE 6 163

Chapter 21
How to use JDBC to work with databases
Objectives

Applied
• Given the arrangement of rows and columns in a table, write SQL statements to

retrieve, insert, update, and delete rows from the table.
• Given an existing database and a database server that supports ODBC, use the ODBC

Data Source Administrator to register the ODBC data source.
• Given the URL, user name, and password required to connect to an ODBC data

source, write the code necessary to create a Connection object that connects to the
database.

• Write code that executes a SELECT statement and processes the results using a
forward-only or scrollable result set.

• Write code that inserts, updates, or deletes rows in a table.
• Given code that executes a SQL statement, modify the code so it uses a prepared

statement and parameters.
• Given a result set, write code that determines the name and data type of each of its

columns.
• Given the specifications for an application that stores its data in a relational database,

implement the program using the JDBC features presented in this chapter.

Knowledge
• Explain how data is organized in a relational database.
• Explain the difference between primary and foreign keys.
• Explain what the SELECT, INSERT, DELETE, and UPDATE statements do.
• Explain what a result set is.
• Explain what a join is, and describe the difference between an inner join and an outer

join.
• Identify the four types of Java database drivers and describe the benefits and

drawbacks of each driver type.
• Describe the use of automatic driver loading and iterable SQL exceptions.
• Explain the difference between a forward-only, read-only result set and a scrollable,

updateable result set.
• Explain what metadata is and how it can be used in database applications.

164 Student Workbook for Murach’s Java SE 6

Summary
• A relational database uses tables to store and manipulate data. Each table contains

one or more rows, or records, while each row contains one or more columns, or
fields.

• A primary key is used to identify each row in a table. A foreign key is a key in one
table that is used to relate rows to another table.

• Each database is managed by a database management system (DBMS) that supports
the use of the Structured Query Language (SQL). To manipulate the data in a
database, you use the SQL SELECT, INSERT, UPDATE, and DELETE statements.

• The SELECT statement is used to return data from one or more tables in a result set.
To return data from two or more tables, you join the data based on the data in related
fields. An inner join returns a result set that includes data only if the related fields
match.

• With JDBC 4.0, the database driver that’s used to connect the application to a
database is loaded automatically. This is known as automatic driver loading. With
JDBC 4.0, you can also loop through any exceptions that are nested within the SQL
Exception object.

• A Java program can use one of four driver types to access a database. Type-1 and
type-2 drivers run on the client’s machine, while type-3 and type-4 drivers can run on
a server machine.

• You can use JDBC to execute SQL statements that select, add, update, or delete one
or more records in a database. You can also control the location of the cursor in the
result set.

• You can use prepared statements to supply parameters to SQL statements.

• You can return a list of the column names and types in a result set by using metadata.
To do this, you may need to convert SQL data types to Java data types.

 Student Workbook for Murach’s Java SE 6 165

Terms
database
relational database
table
row
record
column
field
primary key
database management system

(DBMS)
relational database management

system (RDBMS)
foreign key
one-to-many relationship
one-to-one relationship
many-to-many relationship
default value
Structured Query Language (SQL)
Data Definition Language (DDL)
Data Manipulation Language

(DML)
query
result set
result table
current row pointer
cursor

join
inner join
equi-join
calculated field
outer join
left outer join
right outer join
action query
Java Database Connectivity (JDBC)
database driver
JDBC-ODBC bridge driver
Open Database Connectivity

(ODBC)
native protocol partly Java driver
net protocol all Java driver
native protocol all Java driver
automatic driver loading
BLOB objects (Binary Large

Objects)
CLOB objects (Character Large

Objects)
prepared statement
metadata
column name
column label

166 Student Workbook for Murach’s Java SE 6

Exercise 21-1 Work with JDBC
In this exercise, you’ll install an ODBC driver for the MurachDB database, and you’ll
write JDBC code that works with the MurachDB database.

1. Install an ODBC data source named MurachDB for the MurachDB database that’s in
the ch21\Databases directory as described in figure 21-8. This database is in
Microsoft Access 2000 format. If the ODBC driver for Microsoft Access on your
system doesn’t support the Access 2000 format, use the database named
MurachDB97 instead, but still use MurachDB as the name for the data source.

2. Open the DBTesterApp class that’s in the ch21\DBTester directory. Review the code
and then run the application. It should print all of the records in the Products table to
the console. Then, it should print several blank products to the console.

3. Write the code for the printFirstProduct method. Use column names to retrieve the
column values. Then, compile the class and run the application. You can tell if this
method is working correctly if it prints the first product in the list of products that’s
printed by the printProducts method.

4. Write the code for the printLastProduct method. Note that to move to the last product
in the result set, you’ll need to use a scrollable result set. Compile the class and then
test the application.

5. Write the code for the printProductByCode method. Use a prepared statement to
create the result set, and use indexes to retrieve the column values. Compile the class
and test the application.

6. Write the code for the insertProduct method. This method should begin by checking
if a product with the specified product code exists in the database. If so, this method
should display an error message. Otherwise, it should add the product to the database
and print the product that was added to the console.

7. Compile the class and test the insertProduct method. To do that, you will need to run
the application twice. The first time, the product should be added to the database. The
second time, the product should appear in the list of products, but then an error
message should be displayed indicating that the product already exists.

8. Repeat steps 6 and 7 for the deleteProduct method. You can use this method to delete
the product that was added by the insertProduct method. Compile the class and test
the method.

 Student Workbook for Murach’s Java SE 6 167

Exercise 21-2 Use an Access database with
the Product Maintenance application

This exercise works with a version of the Product Maintenance application of chapter 8
that uses an Access database for the product data. To work with that data, this application
uses the ProductDB class that’s presented in figure 21-16.

Install an ODBC data source and review the application code
1. Make sure an ODBC data source named MurachDB is installed for the MurachDB

database that’s in the ch21\Databases directory as shown in figure 21-8 and described
in step 1 of exercise 21-1.

2. Open the DAOFactory class that’s stored in the ch21\ProductMaintenance directory.
Here, the getProductDAO method has been changed so this application will use the
methods in the ProductDB class to work with the Access database.

3. Open the ProductDB class. This is the code that’s shown in figure 21-16.

4. Open the ProductMaintApp class and review its code. Its code is the same as it was in
chapter 8. Then, run this application. It should work the same as it did in chapter 8,
but now the data is stored in an Access database.

Modify the way the Connection object is used in the ProductDB class
5. Display the ProductDB class, and note that the Connection object isn’t explicitly

closed by this class. Then, delete the instance variable for the Connection object and
delete the statement in the constructor that calls the connect method to initialize this
instance variable.

6. Modify the declaration for the connect method so it returns a Connection object.
Then, modify the code for this method so it creates a Connection object and returns
it.

7. Modify the getProducts, addProduct, updateProduct, and deleteProduct methods so
they call the connect method to return a Connection object, use this connection
object, and close it when they’re done with it. Then, compile and test the application.
It should work the way it did before.

Add a new method to the ProductDB class
8. Add a new method to the ProductDB class called listProducts that lists all of the

products in the database from a result set, not an array list. This method should also
print the heading for the list of products. This is a more efficient way to list the
products because it doesn’t require an array list.

9. To make this work with the ProductDAO interface, which inherits the ProductReader
interface, add the definition of the listProducts method to the ProductReader
interface. Then, in the main method of the ProductMaintApp class when the “list”
action is requested, call the listProducts method from the productDAO object instead
of the DisplayAllProducts method. After you compile these classes, test the
application. It should work the same as before.

168 Student Workbook for Murach’s Java SE 6

Project 21-1: Display Customer Invoices Report

Console
Welcome to the Customer Invoices Report

frankjones@yahoo.com 10504M 11/18/04 $99.00
frankjones@yahoo.com 10501M 10/25/04 $59.50
johnsmith@hotmail.com 10505M 11/18/04 $297.50
johnsmith@hotmail.com 10500M 10/25/04 $495.00
seagreen@levi.com 10502M 10/25/04 $99.00
wendyk@warners.com 10503M 10/25/04 $112.00

Press any key to continue . . .

Operation
• This application connects to a database and displays a list of all customers and their

invoices. Each line in this report includes the customer’s email address, the invoice
number, the invoice date, and the invoice total.

Specifications
• Register an ODBC Data Source named MurachDB that points to either the Microsoft

Access 2000 database file named MurachDB.mdb or the Microsoft Access 97
database file named MurachDB97.mdb. You’ll find these files in the
c:\murach\java6\projects\databases directory. (If you did the exercises for chapter 21,
you will have already created this data source.)

• Create a class named CustomerInvoiceApp that connects to the database, gets a
forward-only, read-only result set that contains the required data, and prints the data
in this result set to the console. Each line should include the EmailAddress column
from the Customers table, followed by the InvoiceNumber, InvoiceDate, and
InvoiceTotal columns from the Invoices table. The rows in the result set should be
sorted by the EmailAddress column.

• Use a prepared statement to retrieve the data.

• Use spaces to align the customer data in columns on the console. To do that, you can
create a utility class named StringUtils that has a method that adds the necessary
spaces to a string to reach a specified length.

• If the application encounters any exceptions, it should print them to the console.

• When the application finishes, it should close the objects for the result set, the
prepared statement, and the database connection.

Enhancement
• Modify the application so it only displays invoices that have not been processed. To

do this, you can add a where clause to the SQL statement so it only gets invoices
where the IsProcessed column is equal to No.

 Student Workbook for Murach’s Java SE 6 169

Project 21-2: Maintain customer data (JDBC)

Console
Welcome to the Customer Maintenance application

COMMAND MENU
list - List all customers
add - Add a customer
del - Delete a customer
help - Show this menu
exit - Exit this application

Enter a command: list

CUSTOMER LIST
frankjones@yahoo.com Frank Jones
johnsmith@hotmail.com John Smith
seagreen@levi.com Cynthia Green
wendyk@warners.com Wendy Kowolski

Enter a command: add

Enter customer email address: jdbc_test@gmail.com
Enter first name: JDBC
Enter last name: Test

JDBC Test was added to the database.

Enter a command: list

CUSTOMER LIST
frankjones@yahoo.com Frank Jones
jdbc_test@gmail.com JDBC Test
johnsmith@hotmail.com John Smith
seagreen@levi.com Cynthia Green
wendyk@warners.com Wendy Kowolski

Enter a command: del

Enter customer email to delete: jdbc_test@gmail.com

JDBC Test was deleted from the database.

Enter a command: list

CUSTOMER LIST
frankjones@yahoo.com Frank Jones
johnsmith@hotmail.com John Smith
seagreen@levi.com Cynthia Green
wendyk@warners.com Wendy Kowolski

Enter a command: exit

Bye.

Press any key to continue . . .

170 Student Workbook for Murach’s Java SE 6

Operation
• This application begins by displaying a menu with five choices: list, add, del, help,

and exit.

• If the user enters “list”, the application displays the customer data that’s stored in a
database table.

• If the user enters “add”, the application prompts the user to enter data for a customer
and saves that data to the database table.

• If the user enters “del”, the application prompts the user for an email address and
deletes the corresponding customer from the database table.

• If the user enters “help”, the application displays the menu again.

• If the user enters “exit”, the application displays a goodbye message and exits.

Specifications
• Create a class named Customer that stores data for the user’s email address, first

name, and last name.

• If you haven’t already done so, register an ODBC Data Source named MurachDB
that points to either the Microsoft Access 2000 database file named MurachDB.mdb
or the Microsoft Access 97 database file named MurachDB97.mdb. You’ll find these
files in the c:\murach\java5\projects\databases directory. (If you did the exercises for
chapter 21, or if you did project 21-1, you will have already created this data source.)

• Create a class named CustomerDB that connects to the MurachDB database when it’s
instantiated. This class should include a public method that returns an array list of
Customer objects for the customers in the Customer table, a public method that
returns a Customer object for the customer with a specified email address, and public
methods that add a record to and delete a record from the Customer table.

• Create a CustomerMaintApp class that works as shown in the console output. This
class should use the Customer and CustomerDB classes to work with the customer
data.

• Use spaces to align the customer data in columns on the console. To do that, you can
create a utility class named StringUtils that has a method that adds the necessary
spaces to a string to reach a specified length.

• Use the Validator class or a variation of it to validate the user’s entries. Non-empty
strings are required for the email address, first name, and last name.

 Student Workbook for Murach’s Java SE 6 171

Enhancements
• Add an “update” command that lets the user update an existing customer. This

command should prompt the user to enter the email address for a customer. Then, it
should let the user update the first name and last name for the customer.

• Add a method to the Validator class that uses string parsing techniques to validate the
email address. At the least, you can check to make sure that this string contains some
text, followed by an @ sign, followed by some more text, followed by a period,
followed by some more text. For example, “x@x.x” would be valid while “xxx” or
“x@x” would not.

• Use an interface to eliminate any direct calls to the CustomerDB class from the
CustomerMaintApp class. To do that, you can use CustomerReader, CustomerWriter,
CustomerConstants, and CustomerDAO interfaces as well as a DAOFactory class as
described in project 19-3. Then, you can modify the CustomerDB and
CustomerMaintApp classes so they use these interfaces and class.

172 Student Workbook for Murach’s Java SE 6

Chapter 22
How to work with a Derby database
Objectives

Applied
• Use the interactive JDBC tool to connect to a database and execute SQL statements.
• Write the Java code for connecting to and disconnecting from an embedded Derby

database.
• Given the specifications for an application that uses an embedded Derby database,

develop the application.

Knowledge
• Describe the characteristics of a Derby database.
• Explain what is meant by an embedded database.
• Describe the use of SQL scripts.

 Student Workbook for Murach’s Java SE 6 173

Summary
• Apache Derby is an open-source, Java-based relational database

management system (RDBMS) that can be embedded in Java
applications or run in a networked client/server system.

• Sun has a distribution of Derby known as Sun Java DB. This is the
version of Derby that’s included in the db directory of Java SE 6.
IBM has a distribution of Derby that’s known as IBM Cloudscape.

• To work with a Derby database, you can use the ij tool (interactive
JDBC tool) to connect to a database and execute SQL statements.

• SQL statements that have been saved in files are known as SQL
scripts. You can run these scripts from the ij prompt or the command
prompt.

• If you connect to a Derby database with a username and create a
database object, that database will be stored in a schema that
corresponds to the username. Then, to access that object, you need to
connect to the database with the same username or to qualify any
reference to that object with the username.

• An embedded Derby database runs in the same process in which the
application that uses the database runs. An embedded database is
normally stored in the same directory as the Java class that uses it.

• You can also run a Derby database management system on a network
server so the database can be accessed by two or more clients. In this
case, the URL for connecting to a database must include the server
name and port.

174 Student Workbook for Murach’s Java SE 6

Terms
Apache Derby
Sun Java DB
IBM Cloudscape
Derby database
interactive JDBC tool (ij tool)
SQL script
embedded Derby database

 Student Workbook for Murach’s Java SE 6 175

Exercise 22-1 Create and access a Derby database
In this exercise, you’ll use JDBC code to create the MurachDB database as a Derby
database. Then, you’ll use the ij tool to work with that database.

Create the Derby database with a Java application
1. Add the derby.jar and derbytools.jar files to the class path as described in figure 22-2.

2. Open the MurachDB class that’s in the ch22\DBTester directory. Review the code for
this class. It contains all of the code necessary to create an embedded Derby database
named MurachDB, create the Products table, and insert two rows into this table. Note
that you don’t need to call the setDbDirectory method if you’re going to store the
database in the same directory as the application. Also note that this code specifies
empty strings for the username and password for the database. As a result, this code
uses the same database schema that’s used when you use the ij tool to connect to the
database.

3. Open the DBTesterApp class that’s in the ch22\DBTester directory. Review the code
and then run the application. It should create the Derby version of the MurachDB
database and print all of the records in the Products table to the console. Then, it
should print several blank product lines, print a record to be inserted into the
database, print the all the records again, print a record to be deleted from the
database, and print all the records again.

Complete the methods in the MurachDB class
4. Write the code for the printFirstProduct, printLastProduct, printProductByCode,

insertProduct, and deleteProduct methods in the MurachDB class. If you completed
exercise 21-1, you can copy the code from that solution. Otherwise, you can refer to
chapter 21 and exercise 21-1 for details on how to implement these methods. This
shows that the JDBC code works the same for an Access database or a Derby
database. The main difference is how you create and connect to the database.

Use the ij tool to work with the Derby database
5. Use the ij tool to connect to the MurachDB database as shown in figure 22-3.

6. Run a SELECT statement that selects all records from the Products table as shown in
figure 22-4.

7. Run an INSERT statement that adds a row to the Products table as shown in figure
22-4, and run the SELECT statement of step 6 again.

8. Disconnect from the database and exit the ij tool.

176 Student Workbook for Murach’s Java SE 6

Exercise 22-2 Use a Derby database with the Product
Maintenance application

This exercise has you modify the Product Maintenance application of exercise 21-2 so it
uses a Derby database instead of an Access database. This is the same application that
was originally presented in chapter 8.

Create an embedded Derby database
1. Open the DBTesterApp class that’s in ch22\ProductMaintenance directory. This is an

abridged version of the DBTesterApp class that you used in exercise 22-1. This
abridged version uses the methods in the MurachDB class just to create a Derby
database in the ProductMaintenance directory. Run this application to create the
embedded MurachDB database, and then close this class.

Modify the Product Maintenance application so it uses that database
2. Open the ProductDB class that’s in ch22\ProductMaintenance directory and review

the code for this class. Note that the connect method connects to the Access database
named MurachDB, because this is the same class that was used for the exercises in
chapter 21. Now, modify this code so it connects to the MurachDB database that you
created in step 1. Use empty strings for the username and password so you can use
the ij tool to connect to this database later on.

3. Open the ProductMaintApp class and run it. Everything should work the same as it
did with the Access version of this application. Note, however, that this application
doesn’t disconnect from the database when the application ends.

4. Add a disconnect method to the ProductDB class that shuts down the Derby database
engine, and modify the ProductMaintApp class so it calls this method when the
application ends. Then, test this enhancement.

 Student Workbook for Murach’s Java SE 6 177

Project 22-1: Display Customer Invoices Report (Derby)

Description
• If you’ve already done project 21-1, copy and modify it so it uses a Derby database.

If you haven’t done project 21-1, do it with a Derby database.

Specifications
• Create a class named MurachDB that has the methods for creating an embedded

Derby database. You can find the SQL statements for creating this database in the
CreateMurachDB.sql file that’s stored in the c:\murach\java6\Projects\Derby
directory.

• Modify the CustomerInvoiceApp class described in project 21-1 so it uses the
MurachDB class to create the embedded database if it doesn’t already exist. Include
statements that print messages to the console that indicate (1) when Derby is starting
and shutting down, (2) when a table is being created, and (3) when rows are being
inserted into the database.

• After the database has been created, the application should do the tasks described in
project 21-1.

178 Student Workbook for Murach’s Java SE 6

Project 22-2: Maintain customer data (Derby)

Description
• If you’ve already done project 21-2, copy and modify it so it uses a Derby database.

If you haven’t done project 22-1, do it with a Derby database.

Specifications
• Copy the MurachDB class from your solution for project 22-1 if you’ve done that

project. Otherwise, create a class named MurachDB that has the methods for creating
an embedded Derby database. You can find the SQL statements for creating this
database in the CreateMurachDB.sql file that’s stored in the
c:\murach\java6\Projects\Derby directory.

• Modify the CustomerMaintApp class described in project 21-2 so it uses the
MurachDB class to create the embedded database if the database doesn’t already
exist.

• After the database has been created, the application should do the tasks described in
project 21-2.

	Behavioral objectives
	Chapter summaries
	Terms
	Exercises
	Projects
	Conclusion
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms
	Objectives
	Applied
	Knowledge

	Summary
	Terms

